
Computational Finance - Lab Assignment 1
Contact: k.chatziandreou@uva.nl // Submit until 18.04.2025

1 Financial Data Science: Realized Volatility [6p]

In this first assignment, we consider the problem of estimating the parameters µ and σ from market data under
the stock price model (working under the physical measure P):

dSt

St
= µdt + σdBt. (1)

Tasks: First, read AppendixA carefully. Then follow the steps:

1. Step 1: Install Python Libraries to Retrieve Financial Data
In a command prompt or terminal, run:

pip i n s t a l l y f i nance s k f o l i o

• skfolio is a Python library for portfolio optimization built on top of scikit-learn.

• yfinance provides a way to fetch financial and market data from Yahoo! Finance.

• We will primarily focus on very liquid tickers such as the SPX, though feel free to experiment with
different ones.

2. Step 2: Explore the yfinance API
Select a ticker of your choice and specify a start and end date (ideally covering a long historical period)
to plot estimators for your mean and realized variance. For example:

import y f inance as y f
import datet ime

t i c k e r = ”AAPL”
s t a r t d a t e = ”2010−01−01”
end date = datet ime . datet ime . now ( ) . s t r f t i m e ( ”%Y−%m−%d” )

data = yf . download ( t i c k e r , s t a r t=s t a r t d a t e , end=end date )

3. Step 3: Historical Estimators

• Select a ticker and a start and end date (ideally a long time window) to plot estimators for the mean
and realized variance using the adjusted closing price.

• Compute the classical historical mean and volatility estimators (as referenced in equations (9) and
(14) in your notes).

• Implement one alternative volatility estimator of your choice (e.g., Parkinson or Garman–Klass) and
compare it with the classical volatility estimator. For example, the Parkinson estimator is given by

σParkinson =

√√√√ 1

4 ln 2

T∑
t=1

[
ln

(
ht

lt

)]2
, (2)

where T is the number of days in the sample, ht is the high price, and lt is the low price on day t.

Similarly, the Garman–Klass estimator is defined as
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where ot is the open price and ct is the close price on day t.

• Compute a rolling window estimator using a 30-day window. Plot the results for all estimators and
explain your findings.



• Finally, select one of the S&P 500 stocks and compare the realized variance estimators with the
time series of implied volatilities for that ticker. To retrieve implied volatility data, you can use the
skfolio package. For example:

import pandas as pd
from s k f o l i o . da ta s e t s import l oad sp500 data se t , l o a d s p 5 0 0 i m p l i e d v o l d a t a s e t
from s k f o l i o . p r e p r o c e s s i n g import p r i c e s t o r e t u r n s

p r i c e s = loa d sp50 0 da ta s e t ( )
i m p l i e d v o l = l o a d s p 5 0 0 i m p l i e d v o l d a t a s e t ( )
X = p r i c e s t o r e t u r n s ( p r i c e s )
X = X. l o c [ ”2010” : ]
i m p l i e d v o l . t a i l ( )

4. Step 4: Implied Volatility Data and VIX Estimation

(a) Download the VIX quoted data for the specified time window:

import y f inance as y f
import datet ime

spx symbol = ”ˆSPX”
today = ”2025−03−05” # Keep t h i s f i x e d in your implementat ion
end date = today
s t a r t d a t e = end date − datet ime . t imede l ta ( days =365)

spx data = yf . download ( spx symbol , s t a r t=s t a r t d a t e , end=end date )
lastBusDay = spx data . index [ −1]
v ix data = yf . download ( ”ˆVIX” , s t a r t=lastBusDay , end=lastBusDay
+ datet ime . t imede l ta ( days =1))
S0 = f loat ( spx data [ ” Close ” ] . i l o c [ −1]) #Find spo t / c l o s i n g p r i c e f o r t ha t p a r t i c u l a r day
r = 0 .02 # Keep t h i s f i x e d
F0 = S0 ∗ math . exp ( r ∗ T) # forward approximation

(b) To determine the available expiration dates for a particular ticker, call the option chain attribute
of the Ticker object. For example:

import y f inance as y f

s p x t i c k e r = yf . Ticker ( ”ˆSPX” )
# Suppose the next e x p i r a t i on i s ”2025−04−03”
exp i ry da t e = ”2025−04−03” # Fixed to approximate a 30−day hor i zon as per CBOE
chain = s p x t i c k e r . op t i on cha in ( exp i ry da t e )
c a l l s d f = chain . c a l l s # I f you can not download the data use the . csv uploaded on Canvas− Ca l l op t i on da ta 2025 −04−03. csv
put s d f = chain . puts # I f you can not download the data use the . csv uploaded on Canvas− Put opt ion data 2025 −04−03. csv

print ( ” Ca l l s  Head : ” )
print ( c a l l s d f . head ( ) )

print ( ”Puts  Head : ” )
print ( put s d f . head ( ) )

# Opt iona l l y , save to CSV
c a l l s d f . t o c s v ( ” s p x c a l l s . csv ” , index=False )
put s d f . t o c s v ( ” spx puts . csv ” , index=False )

(c) Compute the estimated VIX using the estimator V IXt (referenced as equation (19) in your notes)
and compare it with the CBOE-quoted VIX.

(d) Plot the historical estimated realized variances from Step 3 alongside the VIX time series. Perform
statistical analyses (such as correlation or cointegration tests) to assess the relationship between the
time series.



(e) Run regression analyses between SPX returns and the VIX index, as well as between SPX returns
and the historical realized variance estimator. Discuss your observations.
Hint: The variations of the stock index are typically negatively correlated with variations of the VIX
index, whereas the correlation with historical volatility variations may differ.

2 Option Pricing: Power Option [4p]

Power options are useful in pricing realized variance and volatility swaps. Consider an asset whose price process
{St}t≥0 follows a geometric Brownian motion, which is the solution to the stochastic differential equation (SDE)

dSt = µSt dt + σSt dBt,

where µ ∈ R, σ > 0, and {Bt}t≥0 is a standard Brownian motion.

Tasks:

1. Solving the Black–Scholes PDE:

Let r ≥ 0 denote the risk-free interest rate. Solve the Black–Scholes partial differential equation (PDE)
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for s > 0 and t ∈ [0, T ], with the terminal condition

C(s, T ) = s2.

Hint: Try a solution of the form
C(s, t) = s2f(t),

and determine the function f(t).

2. Replicating Portfolio:

Determine the portfolio holdings ξt and ηt in the risky asset St and the riskless asset At (with At = A0e
rt)

such that the portfolio
Vt = C(St, t) = ξtSt + ηtAt, 0 ≤ t ≤ T,

replicates the derivative contract with payoff

C(ST , T ) = (ST )2.

3 Hedging: Volatility Mismatch [8p]

Consider a short position in a European call option on a non-dividend paying stock with a maturity of one year
and strike K = 99 EUR. Let the one-year risk-free interest rate be 6% and the current stock price be 100 EUR.
Furthermore, assume that the volatility is 20%.
Use the Euler method to perform a hedging simulation.

Tasks:

1. Matching Volatility: Conduct an experiment where the volatility in the stock price process matches the
volatility used in the delta computation (i.e., both set to 20%). Vary the frequency of hedge adjustments
(from daily to weekly) and explain the results.

2. Mismatched Volatility: Perform numerical experiments where the volatility in the stock price process
does not match the volatility used in the delta valuation. Run computational experiments for various
levels of volatility and discuss the outcomes.

3. Pricing and Hedging with Implied Volatility: Assume that for an underlying with spot price St, a
vanilla option with value function

C(t, S;σimp) := Ct,

is priced under the risk-neutral measure Q by solving the Black–Scholes–Merton PDE with implied volatil-
ity σimp:
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together with appropriate terminal conditions. The option delta is given by

∆t =
∂Ct

∂St
,

and is computed by solving (5). We also assume that the volatility σimp is implied from a market quote
for C(0, S;σimp) and remains fixed until maturity T . This means the option is priced and delta-hedged
at the level of the implied volatility, thereby avoiding exposure to directional changes in the underlying
when hedging with a different volatility.

In practice, delta-hedging is performed in discrete time (typically daily), and real securities do not follow
perfect log-normal diffusive processes. Thus, assume that the dynamics of the underlying price St under
the objective (real-world) measure P are given by

dSt

St
= r dt + σt dW

P
t , (6)

where σt denotes the instantaneous realized volatility. Model parameters in this SDE are estimated for
trading and risk management purposes, and the expected profit and loss (P&L) and its variance are
computed under P.

Show that in order for the final P&L to vanish on average, the implied volatility σimp used for pricing and
risk management must, on average, match the future realized volatility σt when weighted by the option’s
dollar gamma over its life. That is, one must have
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where σt is the instantaneous realized volatility.

A Assignment 1

Historical Trend Estimation:
By discretizing (1) along a partition of the interval [0, T ] at observation dates t0, t1, . . . , tN , we obtain

Stk+1
− Stk

Stk

= µ(tk+1 − tk) + σ(Btk+1
−Btk), k = 0, 1, . . . , N − 1. (8)

A natural estimator for the drift parameter µ is given by
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, k = 0, 1, . . . , N − 1, denotes market returns observed at discrete times t0, . . . , tN .
Historical Log-Returns:
Alternatively, by considering log-returns, we have
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With uniform time increments tk+1 − tk = T
N , we can replace (9) with the telescoping estimator:
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Using (9), the main contribution to the variance of µ̂N is

Var(µ̂N ) =
1

T 2

N−1∑
k=0

Var(σ∆Bt) =
σ2

T
, (11)



which implies a standard deviation of σ/
√
T . To construct a 95% confidence interval with a 1% window (i.e.,

±0.5%), we set:

q(α)
σ√
T

≤ 0.5%, (12)

leading to T ≥ (1.96σ/0.005)2. Thus, for a volatility σ = 0.2 (20%), we require more than 6.146 years to obtain
an unbiased drift estimator with a precision of 1%. This considerable timeframe motivates our primary focus
on estimating realized volatility rather than drift.
Historical Volatility Estimation:
The volatility parameter σ can be estimated by rearranging (8):
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leading to the unbiased realized volatility estimator:

σ̂2
N :=

1

N − 1

N−1∑
k=0

1

tk+1 − tk

(
Stk+1

− Stk

Stk

− (tk+1 − tk)µ̂N

)2

(14)

=
1

N − 1

N−1∑
k=0

1

tk+1 − tk

(
Stk+1

− Stk

Stk

)2

− T

N − 1
µ̂2
N . (15)

The VIX Index:
An alternative approach to estimate market volatility is using the CBOE Volatility Index (VIX), particularly
for the S&P 500 Index (SPX). Consider an asset price process St satisfying

dSt = rStdt + σtStdBt, (16)

which can also be represented as

St = S0 exp
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)
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where (σt)t≥0 denotes a stochastic volatility process.

Lemma A.1 Let ϕ ∈ C2((0,∞)). For all y > 0, we have the Taylor-type representation

ϕ(x) = ϕ(y) + (x− y)ϕ′(y) +
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for all x > 0.

The next proposition shows that the VIX volatility index, defined by

VIXt :=
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at time t > 0, can be interpreted as an average of future volatility. Here, according to CBOE documentation,
τ = 30 days, and

Ft,t+τ := EQ[St+τ | Ft] = erτSt (20)

represents the forward price at time t+ τ . P (t, t+ τ,K) and C(t, t+ τ,K) denote out-of-the-money put and call
option prices at maturity t + τ with strike K. One can further show that the VIX index at t ≥ 0 corresponds
to the averaged realized variance swap price:
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The second goal is to estimate the VIX index based on the discretization of (19) and market option prices on
the SPX. The strikes for OTM puts and calls are ordered as follows:
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and the discretization of (19) becomes:
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