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Overview
These lecture notes accompany the course ”Portfolio Theory” offered at the University of
Amsterdam as part of the Master Stochastics and Financial Mathematics program. This
course provides a rigorous introduction to stochastic finance in finite discrete-time, includ-
ing the pricing and hedging of European contingent claims, expected utility and theory of
risk measures, as well as portfolio optimization. The only prerequisit is a course similar
to ”Measure Theoretic Probability” or its equivalent. Although occasionally, we might
refer to versions of the Hahn-Banach theorem, typically covered in functional analysis
courses, a background in functional analysis or stochastic analysis is not strictly neces-
sary and key results from (discrete-time) stochastic processes and analysis are provided
in the appendix. The course comprises three main parts:

I. In the first part, we focus on the modelling of discrete-time financial markets, ex-
ploring the important concepts of arbitrage-free and complete markets. We also
delve into their relationships with equivalent martingale measures (existence and
uniqueness). The main results in this section are the first and second fundamental
theorems of asset pricing. Additionally, we demonstrate that realistic financial mod-
els in finite-discrete time cannot be complete. This realization prompts the question
of how to price and hedge European contingent claims in incomplete markets.

II. To address the challenges posed in the first part, we introduce expected utility
theory and risk measures in the second part. These tools allow us to identify criteria
beyond arbitrage-freeness to determine optimal prices and optimal hedging strategies
for European contingent claims, as well as providing us with meaningful target
functions for general portfolio optimization problems.

III. The third part then revolves around solving static and dynamic portfolio optimiza-
tion problems. For this, we introduce a martingale method, relate the portfolio
optimization to a dual measure-valued optimization problem and introduce the dy-
namic programming principle to solve optimal control problems numerically.

References
Numerous comprehensive books and lecture notes are available on portfolio theory and
discrete-time mathematical finance. The most relevant to this course include:

• Föllmer and Schied’s ”Stochastic Finance”;

• The Lecture Notes “Portfolio Theory” by Peter Spreij;

• “Portfolio Optimization and Performance Analysis” by Prigent.

Disclaimers
• These lecture notes are intended solely for educational purposes.

• The content is subject to change and might contain errors.

• Feedback and corrections are highly appreciated.

• Parts marked by a ♣ are meant for self-studying.
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1 Financial Markets in Finite Discrete-Time

1.1 Basic Stochastic Concepts of Mathematical Finance
1.1.1 The Probability Space

Throughout this course, we work within a probability space (Ω,F ,P), where Ω represents
the set of all outcomes ω ∈ Ω; F is a σ-algebra on Ω containing all events A ∈ F ; and
P denotes a probability measure on the measurable space (Ω,F). We sometimes refer
to P as the physical probability measure since it describes the real-world probabil-
ities associated with the occurrence of events A ∈ F . A finite probability space is
any probability space (Ω,F ,P) for which there exists an integer N ∈ N and outcomes
ω1, ω2, . . . , ωN such that Ω = {ω1, ω2, . . . , ωN}, and P({ωi}) > 0 for all i ∈ {1, 2, . . . , N}.

1.1.2 Time and the Flow of Information

In these notes, we consider time to progress in discrete steps over a finite horizon. This
means that there exists a T ∈ N and real numbers 0 ≤ t0 < t1 < . . . < tT <∞ represent-
ing the trading times. Depending on the application, the trading times t0, t1, t2, . . . , tT
could correspond to days, months, or years, as well as seconds, minutes, or hours. For
notational simplicity, we use the index of the trading times instead of the trading days
themselves, i.e., the set of trading times is given as T := {0, 1, . . . , T} ⊆ N0 with finite
time horizon T ∈ N. When modeling time-dependent random phenomena, the natural
chronological order implied by the flow of time must be respected. This means that an
event observed yesterday reveals information that we still remember today, but today we
do not necessarily know what will happen tomorrow. In probability theory, this chronolog-
ical ordering of information is represented by a filtration F = (Ft)t∈T, with each Ft ⊆ F
for t ∈ T being a sub-σ-algebra such that Fs ⊆ Ft for all 0 ≤ s ≤ t ≤ T . The filtration
F is interpreted as a flow of information with Ft containing all information available up
to and including the t-th trading time. Usually, we assume that: (i) F0 is P-trivial, i.e.,
P(A) ∈ {0, 1} for all A ∈ F0, i.e., all F0-measurable random variables are constant P-a.s.;
(ii) F = FT , i.e., all events occur in the finite time horizon. Given a probability space
(Ω,F ,P) and a filtration F, we call the tuple (Ω,F ,P,F) a filtered probability space.

1.1.3 Stochastic Processes and Financial Markets

An Rd-valued stochastic process in finite discrete-time {0, 1, . . . , T} is any family of Rd-
valued random variables X0, X1, . . . , XT defined on (Ω,F ,P). We denote a stochastic
process by (Xt)t∈T or simplyX. To give meaning to time in this framework, we must relate
the stochastic process with the flow of information, that is, the filtration F = (Ft)t∈T. A
stochastic process X is said to be adapted to F if Xt is Ft-measurable for all t ∈ T and it
is called predictable with respect to F if Xt is Ft−1-measurable for all t ∈ {1, . . . , T}. In
mathematical finance, stochastic processes are employed to describe the random evolution
of financial quantities, including asset prices and dynamic trading strategies. An asset
may encompass various entities, from a bank account to stocks, bonds, commodities,
options, and futures, as long as the asset’s price process (St)t∈T is ’observable’ at every
trading time. In mathemtical terms, this translates to (St)t∈T being adapted. Suppose
there are (d + 1) ∈ N tradable assets. Given a filtered probability space (Ω,F ,P,F) and
an Rd+1-valued asset price process X = (S(0), S(1), . . . , S(d)) adapted to F, then we call
the tuple (Ω,F ,P,F, X) a financial market.
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Remark 1.1 (Interpretation of adapted and predictable processes in finance). In
this course, all processes under consideration will be at least adapted. An adapted
process in mathematical finance may, for instance, be the price process (St)t∈T of
some stock. Here, adaptedness can be interpreted as follows: at each trading day
t ∈ T, the asset price St is known given the information in Ft, which means that it can
be “measured” by checking, e.g., your brokerage account. This literally translates to
St being Ft-measurable for all t ∈ T, which is precisely the definition of adaptedness.
For most risky assets, e.g., stocks or commodities, their future price is uncertain,
indicating that St is not measurable with respect to Ft−1, hence the price process of
a risky asset (St)t∈T is usually not predictable.
In contrast, if (Bt)t∈T represents a bank account, its value can be measured at every
trading day t, and is actually already foreseeable at time t− 1 as the interest rate to
be received the following trading period, say over a month, is already known today,
hence the bank account process (Bt)t∈T is usually assumed to be predictable and we
say that (Bt)t∈T is locally risk-free. If we would know the evolution of the interest
rate for the entire period, then Bt is F0 measurable for all t ∈ T, i.e., it is entirely
riskless and deterministic.

Note here, that so far we have not imposed any specific model for the evolution of the
asset price processes

{
(S(i)

t )t∈T : i = 0, 1, . . . , d
}

and for large parts of this course we will
also not do so. However, in the finite discrete-time setting, the following model is popular:

Example 1.2 (The Multinomial and Cox-Ross-Rubinstein model). Simple yet rather
flexible discrete-time models can be constructed as multinomial models, in which asset
prices are modeled as multiplicative cumulative processes as follows: Let r1, r2, . . . , rT
denote random variables representing interest rates for periods (0, 1], . . . , (T − 1, T ],
respectively, and let R(i)

1 , R
(i)
2 , . . . , R

(i)
T for every i = 1, 2, . . . , d be sets of random

variables describing the returns of the i-th risky asset with price process (S(i)
t )t∈T in

the same periods. We then model the bank account process B as

Bt := B0

t∏
j=1

(1 + rj), for all t = 0, 1, . . . , T, (1)

with initial capital B0 ≥ 0 and the asset price processes (St)t∈T as

S
(i)
t := S

(i)
0

t∏
j=1

(1 +R
(i)
j ), for all t = 0, 1, . . . , T, and i = 1, 2, . . . , d, (2)

with S(i)
0 > 0 being the initial price of the i-th (risky) asset observed today. Moreover,

we shall assume that rt > −1 and R
(i)
t > −1 holds P-almost surely for all t =

1, 2, . . . , T and i = 1, 2, . . . , d. If rt = r for all t = 1, 2, . . . , T for some r > −1
and all R(i)

1 , R
(i)
2 , . . . , R

(i)
T are independent and only assume finitely-many values, we

call (St)t∈T the multinomial model. If d = 1 and the returns are identically
distributed according to R(1)

t = U (U ∈ R) with probability 0 < p < 1 and R
(1)
t = D

(U > D > −1) with probability 1− p for all t = 1, . . . , T , then we call the model the
binomial or Cox-Ross-Rubinstein (CRR) model, see also Section 2.5 below.
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1.2 Portfolios and Trading Strategies
Throughout this section we fix a filtered probability space (Ω,F ,P,F) in finite discrete-
time T and let d ∈ N be the total number of tradable risky assets in the market (or
at least the ones that we want to trade). This is exclusive the bank account, which is
tradable as well and which we henceforth denote by S(0) = (S(0)

t )t∈T. As before, it is
reasonable to assume that the bank account process S(0) is predictable with respect to F.
Next, we denote by S(i)

t the price of the i-th asset at trading time t ∈ T and assume that
for every i = 1 . . . , d and t = 0, 1, . . . , T the random variable S(i)

t is Ft-measurable.
We define the vector-valued asset price process as

Xt := (S(0)
t , S

(1)
t , S

(2)
t , . . . , S

(d)
t )⊺, for t = 0, 1, . . . , T.

The process X = (Xt)t∈T is an Rd+1-valued adapted stochastic process giving rise to the
financial market (Ω,F ,P,F, X). In this market we want to trade and construct portfolios
dynamically in time. This motivates the following definition:

Definition 1.3 (Trading strategies and wealth processes). We call any Rd+1-valued
process (φt)t∈T a trading strategy in the market (Ω,F ,P,F, X), if it is predictable
with respect to F. The (d + 1)-components of a trading strategy φ will be denoted
by φ(i) for i = 0, 1, . . . , d, i.e.

φt = (φ(0)
t , φ

(1)
t , . . . , φ

(d)
t )⊺, for t = 0, 1, . . . , T. (3)

For a trading strategy φ we define the associated wealth process (Wt(φ))t∈T as

Wt(φ) := φ⊺
tSt =

d∑
i=0

φ
(i)
t S

(i)
t , for t = 0, 1, . . . , T. (4)

A trading strategy φ describes a dynamically evolving portfolio consisting of the d + 1
assets available for trade, i.e., d risky assets with price processes S(1), S(2), . . . , S(d) and the
bank account S(0). For every fixed trading day t ∈ T, the random variable φ(0)

t describes
the quantity (measured in some unit or currency) held in the bank account at time t,
whereas φ(i)

t represents the quantity we hold of the i-th asset at time t. Intuitively, a
trading strategy must be predictable, as the portfolio allocation for the trading day t is
set up (hence known) at trading day t − 1 and Wt(φ), i.e., the wealth at time t using
strategy φ, is the value of our portfolio before we adjust the portfolio at trading day t.
It is noteworthy that our portfolio weights at time t following strategy φ are Rd+1-valued.
Indeed, our discourse will navigate within the bounds of an idealized market framework,
more formally known as a frictionless market. In a frictionless market, we assume that:
(i) the buy price is equal to the sell price for any asset (no bid-ask spread, no exchange
commission and no taxation), which justifies the use of a single price process for every
asset; (ii) we can lend and borrow capital for the same interest rate, which justifies the use
of a single interest rate r; (iii) we are able to buy and sell all tradable assets in arbitrary
large or small fractions, and (iv) we can purchase negative quantities of an asset (called
shortselling), hence φ is Rd+1-valued; (v) our trading does not affect the asset price, i.e.,
the price process X in a frictionless market is exogenous. Due to the importance of these
conditions we give it an own definition.
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Definition 1.4 (Frictionless market). We say that the financial market (Ω,F ,F,P, X)
is frictionless, if the following conditions are satisfied:

i) No transaction costs;

ii) Money can be lent and borrowed with the same interest rate;

iii) Assets are available in arbitrary quantities;

iv) Short-selling is possible;

v) Trading strategies do not impact prices.

Any deviation to incorporate market frictions would necessitate the imposition of addi-
tional constraints on the trading strategies under consideration. We shall, however, leave
this intricacy for more advanced explorations beyond the scope of this introductory course
and make the following assumption:

Assumption 1.5. As a standing assumption throughout these lecture notes, we
confine our discourse to frictionless financial markets.

1.2.1 Gains and Costs of a Trading Strategy

For simplicity we assume that φ(0)
0 B

(0)
0 = W0 for some initial capital W0 ∈ R and

φ
(i)
0 = 0 for all i = 1, . . . , d. This means at time t = 0, we hold W0(B(0)

0 )−1 units of our
bank account and own none of the risky assets. Then at time t = 1, we set up the first
portfolio using the initial capital W0 and distribute this initial investment over the d risky
assets and the bank account according to the vector φ1, which is actually constant if F0 is
trivial. The wealth process W (φ) in (4) is a real-valued and adapted stochastic process.
We need two more processes to develop the theory further:

Definition 1.6 (Gains and cost process). Let φ be a trading strategy in the financial
market (Ω,F ,P,F, X). We define the gains process (Gt(φ))t∈T associated with the
strategy φ as

Gt(φ) :=
t∑
i=1

φ⊺
i∆Xi, for t = 0, . . . , T, (5)

where ∆Xi := Xi−Xi−1 for i = 1, 2, . . . , T and where we set G0(φ) = 0 by convention.
The cost process (Ct(φ))t∈T of the strategy φ is defined as

Ct(φ) := Wt(φ)−Gt(φ), for t = 0, 1, . . . , T. (6)

The interpretation of the gains and cost processes of a trading strategy φ is relatively
straightforward: The gains process describes the profit or loss (depending on its sign)
that we make trading according to strategy φ, while the cost process represents the costs
associated with strategy φ. Note that by definition of the wealth process (4) and the cost
process (6), the initial cost C0 is equal to the initial capital W0(φ) = W0.
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We make one important observation here: The gains process (Gt(φ))t∈T associated with
a trading strategy φ can be reformulated as a discrete stochastic integral, which is
henceforth denoted by (φ •X)t∈T and by definition satisfies:

(φ •X)t =
t∑
i=1

φ⊺
i∆Xi =

t∑
i=1

d∑
j=1

φ
(j)
i (X(j)

i −X
(j)
i−1), for all t = 0, 1, . . . , T.

In this course, we will collect several properties of martingale transforms in the Ap-
pendix A, but assume that the reader is familiar with the fundamental concepts of mar-
tingales, martingale transforms and discrete-time stochastic integration.
If our strategy involves further inflow of money, e.g., due to an active savings plan, then
the cost process takes this into account. Note however, if the strategy may necessitate the
injection of additional capital or the withdrawal of excess capital, then by our notation
this must be transferred to or from an external capital pool, not our bank account S(0).
Strategies that do not produce additional costs beyond the initial investment are impor-
tant and have their own name:

Definition 1.7 (Self-financing strategy). A trading strategy φ is called self-financing
if its cost process (Ct(φ))t∈T is constant over time, that is:

Ct(φ) = W0(φ), ∀t ∈ T. (7)

Remark 1.8. Note that according to (6) a trading strategy φ is self-financing, if and
only if

Wt(φ) = W0(φ) +Gt(φ), P-a.s. for all t = 0, 1, . . . , T. (8)

This means that the wealth process of a self-financing strategy, at every trading time
t ∈ T, is equal to the sum of the initial wealth W0(φ) and the gains up to time t.

1.2.2 Discounting

Let (Ω,F ,P,F, X) be a (frictionless) financial market with bank account S(0) such that
S

(0)
t > 0 P-almost surely for all t ∈ T, and d risky assets with price processes S(1), . . . , S(d).

We define the discounted price process X̃ as

X̃ := X

S(0) = (1, S
(1)

S(0) ,
S(2)

S(0) , . . . ,
S(d)

S(0) ). (9)

We also write S̃(i) = S(i)/S(0) and define the discounted wealth process (W̃t(φ))t∈T as

W̃t(φ) := Wt(φ)
S

(0)
t

= φ⊺
t X̃t, ∀t ∈ T. (10)

In a finite discrete-time market, discounting a price process does not affect the math-
ematics beyond the numbers, but it is often more convenient to work with discounted
quantities as bookmaking becomes simpler. Specifically, note that discounting implies
expressing prices in quantities of the reference asset, i.e., relative to the bank account S(0)

instead of absolute terms with respect to a reference currency.
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Example 1.9. If, in equation (1), we let B0 = 1 and assume that the interest rates
r1, r2, . . . , rT are all deterministic and equal to some fixed r > −1, then the bank
account S(0)

t satisfies S(0)
t = (1 + r)t for all t = 0, 1, . . . , T . In this case, we have

S̃
(i)
t = (1 + r)−tS

(i)
t , which represents the so called present value of S(i)

t .

The gains process G̃(φ) = φ • X̃ of the discounted asset price process does not depend on
the bank account part φ(0) as ∆X̃ = (0,∆S̃(1),∆S̃(2), . . . ,∆S̃(d)) and the following lemma
holds true:

Lemma 1.10. A strategy φ is self-financing if and only if W̃t(φ) = W̃0(φ) + (φ • X̃)t
holds P-almost surely for all t = 0, 1, . . . , T .

Proof. This follows from Exercise 1.2.

The following lemma examplifies the special role that the bank account process plays:

Lemma 1.11. For any Rd-valued predictable process (φ(1), φ(2), . . . , φ(d)) and W0 ∈
R, there exists a unique predictable process φ(0) such that the Rd+1-valued process
φ, defined as φt := (φ(0)

t , φ
(1)
t , . . . , φ

(d)
t ) for t = 0, 1, . . . , T , is a self-financing strategy

with W0(φ) = W0.

Proof. Let (φ(1), φ(2), . . . , φ(d)) be an Rd-valued predictable process and let W0 ∈ R.
We are looking for a real-valued predictable process φ(0) such that the process φ :=
(φ(0), φ(1), . . . , φ(d)) is a self-financing straetgy that satisfies W0(φ) = W0. Note that by
Lemma 1.10, any self-financing strategy φ must satisfy the identity

W̃t(φ) = W̃0(φ) + (φ • X̃)t P-a.s.,

for all t = 0, 1, . . . , T , which is equivalent to

φ
(0)
t +

d∑
i=1

φ
(i)
t

S
(i)
t

S
(0)
t

= W̃0(φ) +
t∑

j=1
φ⊺
j (∆

S
(0)
j

S
(0)
j

,∆
S

(1)
j

S
(0)
j

, . . . ,∆
S

(d)
j

S
(0)
j

), P-a.s. ∀t = 0, 1, . . . , T.

Now, for any t ∈ T and by rearranging some terms, we obtain

φ
(0)
t = W̃0(φ) +

t∑
j=1

(φ(1)
j , φ

(2)
j , . . . , φ

(d)
j )(∆

S
(1)
j

S
(0)
j

, . . . ,∆
S

(d)
j

S
(0)
j

)⊺ −
d∑
i=1

φ
(i)
t

S
(i)
t

S
(0)
t

= W̃0(φ) +
t−1∑
j=1

(φ(1)
j , φ

(2)
j , . . . , φ

(d)
j )(∆

S
(1)
j

S
(0)
j

, . . . ,∆
S

(d)
j

S
(0)
j

)⊺ +
d∑
i=1

φ
(i)
t

(S(i)
t

S
(0)
t

− S
(i)
t−1

S
(0)
t−1

)

−
d∑
i=1

φ
(i)
t

S
(i)
t

S
(0)
t

= W̃0(φ) +
(
(φ(1), φ(2), . . . , φ(d))⊺ • (S̃(1), S̃(2), . . . , S̃(d))⊺

)
t−1
−

d∑
i=1

φ
(i)
t

S
(i)
t−1

S
(0)
t−1

. (11)
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Thus for every t ∈ T and given the predictable process (φ(1), φ(2), . . . , φ(d)) and W0, we see
that the random variables on the right-hand side of (11) are all Ft−1-measurbale, which
implies that the process (φ(0)

t )t∈T given by the left-hand side of (11) is Ft−1-measurable
and by setting W̃0(φ) = W0, we therefore found the unique predictable process (φ(0)

t )t∈T
satisfying the asserted properties.

Remark 1.12. Note that by Lemma 1.11, we may identify any strategy (φ(1), . . . , φ(d))
with the self-financing strategy φ = (φ(0), φ(1), . . . , φ(d)) satisfying W0(φ) = W0 for
some initial capital W0 ∈ R, i.e., the initial capital W0 and the trading (φ(1), . . . , φ(d))
in the d risky assets uniquely determines the trading in the bank account φ(0). We
therefore often denote a self-financing straetgy φ as φ = (W0, ϕ), where W0 ∈ R and ϕ
is an Rd-valued predictable process from Lemma 1.11, and write W̃t(φ) = W̃0+G̃t(ϕ).

1.3 Arbitrage and Equivalent Martingale Measures
In this section, we study the important financial concept of arbitrage, respectively arbitrage
opportunities and the consequences of their absence in financial markets. This theoretical
concept is essential for the asset pricing theory that we will develop in this course.

1.3.1 Arbitrage

We begin with the definition of an arbitrage opportunity and the absence of such in a
financial market:

Definition 1.13. A self-financing strategy φ is called an arbitrage opportunity if the
following conditions hold true:

i) the initial wealth is zero, i.e., W0(φ) = 0 P-a.s.,

ii) the terminal wealth is non-negative, i.e., WT (φ) ≥ 0 P-a.s.,

iii) there is a positive probability that the terminal wealth is strictly positive, i.e.,
P(WT (φ) > 0) > 0.

We call a financial market (Ω,F ,F,P, X) arbitrage free, if there exists no such
arbitrage opportunity.

A first implication of the absence of arbitrage in a financial market is given by the following
lemma:

Lemma 1.14 (Law of one price). Let φ and ψ be two self-financing strategies such
that WT (φ) ≤ WT (ψ) P-almost surely. If the financial market (Ω,F ,P,F, X) is
arbitrage free, then also Wt(φ) ≤ Wt(ψ) P-almost surely for all t = 0, 1, . . . , T − 1.
In particular in an arbitrage-free market, it holds that if WT (φ) = WT (ψ) P-almost
surely, then also Wt(φ) = Wt(ψ) P-almost surely for all t = 0, 1, . . . , T − 1.
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Proof. Suppose that there exists a time t ∈ {0, 1, . . . , T − 1} such that Wt(φ) > Wt(ψ)
with positive probability, i.e., P(Wt(φ) > Wt(ψ)) > 0.
Consider a new trading strategy θ = ψ−φ. Notice that θ is also a self-financing strategy
since both φ and ψ are self-financing. The wealth process of θ is given by Wt(θ) =
Wt(ψ)−Wt(φ).
By our assumption, there is a positive probability that Wt(θ) < 0. But since WT (φ) ≤
WT (ψ) P-almost surely, we have WT (θ) = WT (φ)−WT (ψ) ≥ 0 P-almost surely.
Now, let’s consider the strategy θ′ that starts investing according to θ at time t, if Wt(φ) >
Wt(ψ), and does not trade afterwards, i.e., just holds the position. Note that at time t,
we can afford the position θ = ψ − φ with zero initial capital, since we only buy it if
Wt(φ) > Wt(ψ) and in this case we have Wt(φ)−Wt(ψ) > 0 units that we invest in any
asset at time t, e.g., the bank account.
Since θ is self-financing, θ′ is also self-financing. Moreover, the initial wealth of θ′ is zero,
and its terminal wealth is non-negative, i.e., WT (θ′) ≥ 0. Additionally, there is a positive
probability that the terminal wealth of θ′ is strictly positive (it is, if the situation Wt(φ) >
Wt(ψ) happens, the (Wt(φ)−Wt(ψ))S(i)

T the price of the i-th asset that we invested in),
i.e., P(WT (θ′) > 0) > 0. Thus θ′ is an arbitrage opportunity, which contradicts the
assumption that the market is arbitrage-free and our initial assumption that there exists
a t ∈ T with Wt(φ) > Wt(ψ) with positive probability must be false.

1.3.2 Equivalent Martingale Measures

In this section, we come to a purely mathematical description of arbitrage free markets.
This is closely related to the conecpt of martingales and martingale measures. First,
we recall that two probability measures P and Q, defined on the same measurable space
(Ω,F), are called equivalent if for all A ∈ F we have P(A) = 0 if and only if Q(A) = 0.
In this case we write P ∼ Q and we may define the density process Zt := dP

dQ |Ft for
t = 0, 1, . . . , T , which is a martingale with respect to Q.

Definition 1.15. An equivalent martingale measure for the market (Ω,F ,P,F, X)
is any probability measure Q ∼ P on (Ω,FT ) such that the discounted price process
X̃ is a Q-martingale with respect to the filtration F.

Theorem 1.16 (Doob’s system theorem ♣). For a probability measure Q, the fol-
lowing conditions are equivalent:

i) Q is a martingale measure;

ii) If φ = (W0, ϕ) is a self-financing strategy and ϕ is bounded, then the discounted
wealth process W̃ (φ) of φ is a Q-martingale;

iii) If φ = (W0, ϕ) is a self-financing strategy and its discounted wealth process
W̃ (φ) satisfies EQ

[
W̃t(φ)−

]
<∞ for all t ∈ T, then W̃ (φ) is a Q-martingale;

iv) If φ = (W0, ϕ) is a self-financing strategy and its discounted wealth process
W̃ (φ) satisfies W̃T (φ) ≥ 0 P-a.s., then EQ

[
W̃T (φ)

]
= W0.

10



Proof. i)⇒ ii): Let (W̃t(φ))t∈T be the discounted value process of a self-financing trading
strategy φ = (W0, ϕ) such that there exists a constant c with |ϕ(i)

t | ≤ c for all i = 0, 1, . . . , d
and t = 0, 1, . . . , T . Then,

|W̃t(φ)| ≤ |W̃0|+
t∑

k=1
c(|S̃k|+ |S̃k−1|).

Since Q is a martingale measure, each |S̃k| belongs to L1(Q) and we have EQ
[
|W̃t(φ)|

]
<

∞. Moreover, for 0 ≤ t ≤ T − 1,

EQ
[
W̃t+1(φ)|Ft

]
= EQ

[
W̃t(φ) + ϕ⊺

t+1(S̃t+1 − S̃t)|Ft
]

= W̃t(φ) + ϕ⊺
t+1EQ

[
S̃t+1 − S̃t|Ft

]
= W̃t(φ),

where ϕt+1 is Ft-measurable and bounded by assumption.
ii) ⇒ iii): We will show the following implication:

If EQ

[
W̃t(φ)−

]
<∞, then EQ

[
W̃t(φ)|Ft−1

]
= W̃t−1(φ). (12)

Since EQ

[
W̃T (φ)−

]
<∞ by assumption, we will then get

EQ

[
W̃T−1(φ)−

]
= EQ

[
EQ

[
W̃T (φ)|FT−1

]−]
≤ EQ

[
W̃T (φ)−

]
<∞,

due to Jensen’s inequality for conditional expectations. Repeating this argument will
yield EQ

[
W̃t(φ)−

]
<∞ and EQ

[
W̃t(φ)|Ft−1

]
= W̃t−1(φ) for all t ∈ T. Since W̃0(φ) = W̃0

is a finite constant, we also get EQ

[
W̃t(φ)

]
= W̃0(φ), which together with the fact that

EQ

[
W̃t(φ)−

]
<∞ implies W̃t(φ) ∈ L1(Q) for all t ∈ T. Thus, the martingale property of

W̃ (φ) will follow.
To prove (12), note first that EQ

[
W̃t(φ)|Ft−1

]
is well-defined due to our assumption

EQ

[
W̃t(φ)−

]
< ∞. Next, let ϕ(a)

t := ϕt1{|ϕt|≤a} for a constant a > 0. Then (ϕ(a)
t )⊺(S̃t −

S̃t−1) is a martingale increment by condition ii). In particular, (ϕ(a)
t )⊺(S̃t− S̃t−1) ∈ L1(Q)

and EQ
[
(ϕ(a)

t )⊺(S̃t − S̃t−1)|Ft−1
]

= 0. Hence,

EQ

[
W̃t(φ)|Ft−1

]
1{|ϕt|≤a} = EQ

[
W̃t(φ)1{|ϕt|≤a}|Ft−1

]
− EQ

[
(ϕ(a)

t )⊺(S̃t − S̃t−1)|Ft−1
]

= W̃t−1(φ)1{|ϕt|≤a}.

By letting a ↑ ∞, we obtain (12).
iii) ⇒ iv):
Since F0 = {∅,Ω}, we have

W̃0 = EQ
[
W̃T (φ)|F0

]
= EQ

[
W̃T (φ)

]
.

This proves this direction.
iv) ⇒ i): To prove that S̃(i)

t ∈ L1(Q) for given i ∈ {1, . . . , d} and t ∈ T, consider the
deterministic process φ defined by

ϕ(i)
s := 1{s≤t} and ϕ(j)

s := 0 for j ̸= i.

11



It follows from Lemma 1.11 that ϕ can be complemented with a predictable process φ(0)

such that φ := (φ(0), ϕ) is a self-financing strategy with initial investment W0 = S̃
(0)
i . The

corresponding value process satisfies

W̃T (φ) = W̃0 +
T∑
s=1

φ⊺
s(S̃s − S̃s−1) = X

(i)
t ≥ 0.

From iv) we get

EQ
[
S̃

(i)
t

]
= EQ

[
W̃T (φ)

]
= W0 = S̃

(i)
0 , (13)

which yields S̃(i)
t ∈ L1(Q).

Condition i) will follow if we can show that

EQ
[
S̃

(i)
t 1A

]
= EQ

[
S̃

(i)
t−11A

]
for i = 1, . . . , d, t = 1, . . . , T and A ∈ Ft−1. To this end, we define a d-dimensional
predictable process φ by

ϕ(i)
s := 1{s<t} + 1Ac1{s=t} and ϕ(j)

s := 0 for j ̸= i.

As above, we take a predictable process φ(0) such that φ := (φ(0), ϕ) is a self-financing
strategy with initial investment W̃ ′

0 = S̃
(i)
0 . Its terminal value is given by

W̃T (φ) = W̃ ′
0 +

T∑
s=1

φ⊺
s(S̃s − S̃s−1) = S̃

(i)
t 1Ac + S̃

(i)
t−11A ≥ 0.

Using iv) yields

S̃
(i)
0 = W̃ ′

0 = EQ

[
W̃T (φ)

]
= E

S̃
(i)
t 1Ac

[+]EQ

[
S̃

(i)
t−11A

]
.

By comparing this identity with (13), we conclude that

EQ

[
S̃

(i)
t 1A

]
= EQ

[
S̃

(i)
t−11A

]
,

which also concludes the proof.

The following lemma is remarkable as it establishes a connection between the purely
mathematical notion of an equivalent martingale measure and the normative financial
condition of arbitrage-free markets.

Lemma 1.17. Let (Ω,F ,F,P, X) be a financial market. If there exists an equivalent
martingale measure Q, then (Ω,F ,F,P, X) is arbitrage free.

Proof. Let φ denote a self-financing strategy with W0(φ) = 0 and WT (φ) ≥ 0 P-a.s., i.e.
φ is a potential arbitrage opportunity if also the fourth condition P(WT (φ) > 0) > 0
would hold. However, we prove that if there exists an equivalent martingale measure
Q of (Ω,F ,F,P, X) this fourth condition can not hold. Indeed, let Q be a equivalent
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martingale measure and denote the expectation with respect to Q by EQ [·]. Then the
expected terminal wealth under Q satisfies:

EQ
[
W̃T (φ)

]
= EQ

[
W̃0(φ) + (φ • X̃)T

]
= EQ

[
(φ • X̃)0

]
= 0,

where we used the fact that W̃0(φ) = 0, the equivalence of P and Q, the definition of the
discounted wealth process as martingale transform W̃ (φ) = (φ• X̃), and that X̃ and thus
also (φ• X̃) is a Q-martingale. Since P ∼ Q, we have EP

[
W̃T (φ)

]
= EP [WT (φ)] = 0. But

we also know that WT (φ) ≥ 0 P-a.s. Combining these facts, we have that WT (φ) = 0 P-
a.s.. Therefore, P(WT (φ) > 0) = 0, which means that the third condition for an arbitrage
opportunity does not hold. Hence, if there exists an equivalent martingale measure Q,
the market (Ω,F ,F,P, X) is arbitrage-free.

1.3.3 The First Fundamental Theorem of Asset Pricing

We can now state the following dynamic version of the so called first fundamental theorem
of asset pricing, which relates the absence of arbitrage opportunities in a market to the
existence of equivalent martingale measures. In the following, for a sub-σ-algebra G ⊆ F ,
we denote by L0(Ω,G,P) the set of G-measurable random variables, identifying all P-
almost surely equal random variables.

Theorem 1.18 (First Fundamental Theorem of Asset Pricing). The financial market
(Ω,F ,P,F, X) is arbitrage-free if and only if there exists an equivalent martingale
measure Q of (Ω,F ,P,F, X). In this case, there exists an equivalent martingale
measure Q which has a bounded density dQ

dP .

Proof. If there exists an equivalent martingale measure Q for (Ω,F ,P,F, X), then it
follows immediately from Lemma 1.17 that the market is arbitrage-free.
The reverse direction is the tricky one and we will only prove it for the case of a finite
probability space (Ω,F ,P). Therefore, assume that Ω = {ω1, ω2, . . . , ωN} for some N ∈ N
and P({ωi}) > 0 for all i = 1, . . . , N .
Suppose that the market (Ω,F ,P,F, X) is free of arbitrage. Note that this means that
the set G :=

{
G̃T (ϕ) : ϕ is a predictable Rd − valued process

}
of discounted gains satisfies

G ∩ L0,+(Ω,FT ) = {0} , (14)

with L0,+(Ω,FT ) denoting the set of all non-negative FT -measurable random variables.
Further note that

G =
{
W̃T (φ) : φ = (W0, ϕ) is a self-financing strategy with W0 = 0

}
,

as every self-financing strategy φ with W̃0(φ) = 0 satisfies W̃T (φ) = G̃T (φ) and (14) then
tells us that all self-financing strategies φ with initial wealth zero and non-negative wealth
at time T lead to zero terminal wealth, i.e., WT (φ) = GT (φ) = 0.
Next, note that since Ω = {ω1, ω2, . . . , ωN}, every random variable Y on (Ω,FT ) is of
the form Y (ω) = ∑N

i=1 yi1{ωi}(ω) where yi ∈ R for i = 1, 2, . . . , N . Hence, we identify
every Y ∈ L0(Ω,FT ) with the vector y = (y1, y2, . . . , yN)⊺, where, in particular, Y = 0 is
identified with 0 ∈ RN and L0,+(Ω,FT ) with the non-negative orthant RN

+ .

13



Note further, that for every trading strategy φ the discounted terminal gain G̃T (φ) is FT
measurable as well, i.e., it is also of the form

G̃T (φ)(ω) =
N∑
i=1

gi(φ)1{ωi}(ω).

Using the same identification here, means that G is identified with the set

G ′ = {(g1(φ), g2(φ), . . . , gN(φ))⊺ : φ is a trading strategy} .

Even if this set seems to be a little obscure, it is a linear subspace of RN , since the
gains process is linear in φ (the discrete stochastic integral is linear in its integrand), and
moreover the zero is also mapped to the zero vector in RN . Since, we are using the same
identification we see that the property (14) is preserved and we have

G ′ ∩ RN
+ = {0} .

Now, the following idea to ’construct’ an equivalent martingale measure out of the geo-
metric condition (14) is a rather nice idea and a similar (but more involved) approach
works for the infinite probability space case:
First, define the convex, closed and bounded set

C :=
{
y = (y1, y2, . . . , yN) ∈ RN

+ :
N∑
i=1

yi = 1
}
. (15)

We observe that C ⊆ RN
+ , but 0 ∈ Cc and therefore also C ∩ G ′ = ∅! This actually allows

us to separate the compact convex set C from the subspace G ′ by a separating hyperplane,
that is, there exists a v ∈ RN \ {0} such that

v⊺g = 0 ∀g ∈ G ′, (16)
and v⊺f > 0 ∀f ∈ C. (17)

Note further that the for all i = 1, 2, . . . , N the unit basis vectors fi = (0, . . . , 0, 1, 0, . . . , 0)⊺
are in C and therefore by (17) we have v⊺fi = vi > 0 for all i = 1, 2, . . . , N . We thus
define

pi := vi∑N
i=1 vi

∀i = 1, 2, . . . , N. (18)

Note that for all i = 1, 2, . . . , N we have pi ∈ (0, 1) and ∑N
i=1 pi = 1, i.e., we can interpret

the pi’s as probabilities, which puts us close to the desired equivalent martingale measure.
Indeed, we set Q({ωi}) = pi and note that Q is equivalent to P, as both measure agrees
that all ωi have a positive probability to occure.
Next, we show that Q is also an martingale measure, i.e., the discounted asset price
vector X̃ is a martingale under Q. This can be seen as follows: Note first, that given
the definition of Q and dividing both sides of the identity (16) by ∑N

i=1 vi, we see that
it is equivalent to ∑N

i=1 pigi = 0 or in other words ∑N
i=1 Q({ωi})gi = 0, which means

EQ [g] = 0 for the random variable g = ∑N
i=1 gi1{ωi}. In particular, this holds for the

G̃T (φ) = ∑N
i=1 gi(φ)1{ωi} from above and hence for any trading strategy φ we have

EQ
[
G̃T (φ)

]
= 0. (19)
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Now, let A ∈ Fk−1 be arbitrary and define the strategy φ̃t(ω) := 1k(t)1A(ω)fi, i.e., the
strategy is that at time k we buy one unit of the i-th asset if also the event A ∈ Fk−1
occurs.
This process is indeed a trading strategy, i.e., predictable, and inserting this into (19)
yields:

EQ
[
G̃T (φ̃)

]
= EQ

[
T∑
t=1

φ̃⊺
t (X̃t − X̃t−1)

]
= EQ

[
φ̃

(i)
k (S̃(i)

k − S̃
(i)
k−1)

]
= EQ

[
1A(S̃(i)

k − S̃
(i)
k−1)

]
= 0.

Hence, EQ
[
1AS̃(i)

k

]
= EQ

[
1AS̃(i)

k−1

]
and since A ∈ Fk−1 was arbitrary, this proves the mar-

tingale property for the asset price process S̃(i) (and i ∈ {1, 2, . . . , d} was also arbitrary)
so also the discounted process X̃ is a Q-martingale. This concludes the proof as we found
an equivalent martingale measure Q as asserted. Since the probability space is finite, the
Radon Nikodym derivative is immediately bounded.

Remark 1.19. The proof of the first fundamental theorem of asset pricing is based on
the geometric description of the no-arbitrage condition (14) and the idea of separating
a closed convex cone inside G from the positive orthant. This idea can be extended
towards the general case of an infinite probability space and a version of Hahn-
Banach’s Separation Theorem C.3. However, for this, the ambient space of G should
be a Banach space, i.e., one could think of considering Lp-spaces for some p ≥ 1.
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2 Pricing and Hedging of European Contingent Claims
In this section, we consider a finite discrete-time financial market (Ω,F ,P,F, X), where
T = {0, 1, . . . , T} represents the trading times with time horizon T ∈ N, and d ∈ N
indicates the total number of risky assets. In this setting, the multivariate asset price
process X = (S(0), S(1), . . . , S(d)) is often referred to as the price process of the underlying
securities S(i) for i = 0, 1, . . . , d, as we also explore securities whose prices are contingent
on the evolution of these underlying prices. Such securities are then called derivatives
written on the underlyings S(0), S(1), . . . , S(d). Derivatives are typically contracts that
specify particular transactions (dependent on the underlying securities) to be executed at
predetermined prices in the future.
Suppose a derivative with price process denoted by S(d+1) is introduced into the arbitrage-
free market (Ω,F ,P,F, X) as an additional tradable asset. Then a critical question
emerges: if the market was initially arbitrage-free and the derivative is liquidly tradable,
what conditions must the price process of the derivative fulfill to maintain the absence of
arbitrage opportunities? To address this question, we first refine the concept of deriva-
tives in the next section and introduce the fundamental pricing and hedging problem
that we face in mathematical finance.

2.1 European Contingent Claims
In this section we introduce a particular class of contingent contracts, which are charac-
terized by the fact that they have a fixed expiry date, i.e., a fixed date where the contract
can be executed.

Definition 2.1 (European Contingent Claim). We call any FT -measurable non-
negative random variable H a European contingent claim. If a European con-
tingent claim H is σ(X0, X1, . . . , XT )-measurable, then it is considered a (European)
derivative of X.

A European contingent claim describes the pay-off that the holder of the instrument
receives at time T , which may depend on the entire information up to time T . If it solely
depends on the history of the underlying price process X, it is classified as a derivative
written on X. In the context of contingent claims, the European refers to the payoff being
fixed at the terminal date T as opposed to American contingent claims, which can be
executed at any trading time.
In the following, we present a few examples of popular derivatives in real-world financial
markets. The derivatives are specified by their contingent claim H:

Example 2.2 (European call option). A European call option written on asset i with
maturity date T and strike price K grants its owner the right, but not the obligation,
to purchase at time T one unit of asset i for the price K. The contingent claim of a
European call option is thus given by

H(ω) ≜ max(0, S(i)
T (ω)−K) =

(
S

(i)
T (ω)−K

)+
. (20)
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Example 2.3 (Digital Barrier option). A Digital Barrier option written on asset i
with maturity date T , barrier level B, and strike price K provides a fixed payoff if
the asset price reaches or exceeds the barrier level B during the option’s life. The
contingent claim of a Digital Barrier option is given by

H(ω) ≜ 1{S(i)
t (ω)≥B for some t∈{0,...,T}}(ω). (21)

Example 2.4 (Asian call option). An Asian call option written on asset i with
maturity date T and strike price K gives its owner the right, but not the obligation,
to purchase one unit of asset i for the price K at time T , based on the average price
of the asset over a specific period. The contingent claim of an Asian call option is

H(ω) ≜ max
(

0, 1
T

T∑
t=0

S
(i)
t (ω)−K

)
=
(

1
T

T∑
t=0

S
(i)
t (ω)−K

)+

. (22)

2.1.1 The Pricing and Hedging Problem

For the buyer, derivatives serve as powerful instruments within financial markets, offering
both retail and institutional buyers the opportunity to manage future cash flows, hedge
commodity exposures, speculate, and more. Simultaneously, a counterparty (often a
financial institution such as a bank) must undertake the inverse role in the derivative
trade, i.e., selling the derivative to the client. This trade positions the seller of the claim
with the liability of −H at time T , which could potentially be huge and should be insured
(or in financial terms, hedged). Indeed, the intricacies of this interaction lead to the two
following problems that we aim to solve in this course:

Pricing Problem The asset pricing problem inquires: given a contingent claim H with
maturity date T , what determines the fair value of the associated derivative at any
time t prior to the maturity date T? In this context, fair value denotes a price that
precludes arbitrage opportunities in the market upon the introduction of this newly
priced asset.

Hedging Problem In every derivative contract, a counterparty assumes the opposite
position. The hedging problem for the seller can be formulated as follows: upon
selling the contingent claim H, what measures can be taken to mitigate the risk
associated with the obligation to pay the random and uncertain amount H at time
T? What price should the seller of the claim charge prior to maturity?

These problems are inherently intertwined. The fundamental principle for addressing
both questions involves utilizing only the underlying assets S(0), S(1), . . . , S(d) to construct
a synthetic product that replicates H as accurately as possible. As this product’s value
is derived from the given assets, it should serve as a reliable approximation for the value
of H in the absence of arbitrage. We formalize this idea in the next definition.
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Definition 2.5. A European contingent claim H is called attainable or replicable if
there exists a self-financing strategy φ such that the terminal wealth of this strategy
satisfies WT (φ) = H P-almost surely. In this case, we say that the strategy φ
replicates the contingent claim H, and we refer to φ as a replicating or perfect
hedging strategy for H.

2.1.2 Risk-Neutral Pricing

In this section, we show that for any attainable European contingent claim H, the asset
pricing problem can be solved in arbitrage-free markets. Furthermore, a unique “fair
price” can be derived for each trading day t ∈ T prior to maturity, along with a pricing
formula, where fair price means that the extended market is still free-of-arbitrage after
introducing the contigent claim. This is demonstrated in the following theorem, where
we denote the discounted contingent claim by

H̃ := H

S
(0)
T

.

Theorem 2.6 (Risk-Neutral Pricing). Consider an arbitrage-free financial market
(Ω,F ,P,F, X) and let Q be an equivalent martingale measure for this market. Then,
for any attainable European contingent claim H, its discounted unique fair value W̃H

t

at time t is given by

W̃H
t = EQ

[
H̃ | Ft

]
= W̃t(φ), P-a.s. ∀t = 0, 1, . . . , T, (23)

where φ is any replicating strategy for H.

Proof. Let φ be a self-financing strategy that replicates the contingent claim H, so that
WT (φ) = H P-almost surely, and hence W̃T (φ) = H̃. Since the market is arbitrage-free,
the First Fundamental Theorem of Asset Pricing ensures the existence of an equivalent
martingale measure Q under which the discounted wealth process W̃t(φ) is a Q-martingale.
Therefore,

W̃t(φ) = EQ

[
W̃T (φ) | Ft

]
= EQ

[
H̃ | Ft

]
, P-a.s. ∀t = 0, 1, . . . , T.

By the Law of One Price (Lemma 1.14), the fair value W̃H
t of the claim H at time t must

equal the wealth of any replicating strategy at that time, i.e.,

W̃H
t = W̃t(φ) = EQ

[
H̃ | Ft

]
, P-a.s. ∀t = 0, 1, . . . , T.

This completes the proof.

It is crucial to observe that WH
t represents the fair value or price of the contingent

claim H at time t, which implies that the extended market (Ω,F ,P,F, (X,S(d+1))) with
S

(d+1)
t := WH

t for t = 0, 1, . . . , T , is arbitrage-free. A significant assertion of Theorem 2.6
is that the fair price is uniquely determined by the formula (23). In other words, assuming
the absence of arbitrage opportunities in a market yields a unique price for any attain-
able European contingent claim. This provides an answer to the pricing problem for all
attainable claims. Nonetheless, a challenge remains: determining whether a contingent
claim is attainable and effectively constructing corresponding replicating strategies φ.
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2.1.3 Arbitrage-Free Prices

We have solved the pricing problem for any attainable European contingent claim H in
Theorem 2.6, where we observed that there exists a unique fair price W̃H

0 for the claim
at t = 0. In this section, we show that if a claim is non-attainable in an arbitrage-free
market, then there exists an entire open interval of prices such that the extended market
remains arbitrage-free.

Definition 2.7. A real number πH ≥ 0 is called an arbitrage-free price of a
contingent claim H if there exists a stochastic process S(d+1) satisfying:

i) S
(d+1)
0 = πH ,

ii) S
(d+1)
t ≥ 0 P-almost surely for all t = 0, 1, . . . , T ,

iii) S
(d+1)
T = H P-almost surely,

and such that the extended market (Ω,F ,P,F, (S(0), . . . , S(d), S(d+1))) is arbitrage-
free. Furthermore, we denote the set of all such arbitrage-free prices of H as Π(H).

We denote by P the set of all equivalent martingale measures (EMMs) of the financial
market (Ω,F ,P,F, X). The following theorem is fundamental for solving the pricing
problem for non-attainable contingent claims.

Theorem 2.8. Let Π(H) denote the set of arbitrage-free prices of a European con-
tingent claim H. Then Π(H) is non-empty and can be expressed as

Π(H) =
{
EQ

[
H̃
]

: Q ∈ P , EQ

[
H̃
]
<∞

}
. (24)

Furthermore, we have inf Π(H) = infQ∈P EQ

[
H̃
]

and sup Π(H) = supQ∈P EQ

[
H̃
]
.

Proof. Suppose πH ∈ Π(H). By the definition of an arbitrage-free price, the extended
market (Ω,F ,P,F, (S(0), S(1), . . . , S(d), S(d+1))) is arbitrage-free. Consequently, by the
First Fundamental Theorem of Asset Pricing (Theorem 1.18), there exists an equivalent
martingale measure Q such that, for all i = 1, 2, . . . , d+ 1, we have

S̃
(i)
t = EQ

[
S̃

(i)
T | Ft

]
, ∀t = 0, 1, . . . , T.

In particular, for i = 1, 2, . . . , d, the processes (S̃(i)
t )Tt=0 are Q-martingales, indicating that

Q ∈ P . Thus, Q is also an equivalent martingale measure for the original market, and we
have

πH = S̃
(d+1)
0 = EQ

[
S̃

(d+1)
T | F0

]
= EQ

[
H̃
]
<∞,

which implies that πH ∈
{
EQ

[
H̃
]

: Q ∈ P , EQ
[
H̃
]
<∞

}
.

Conversely, suppose πH = EQ

[
H̃
]

for some Q ∈ P . Define the process

S
(d+1)
t := S

(0)
t EQ

[
H̃ | Ft

]
, ∀t = 0, 1, . . . , T.
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Then S(d+1)
0 = S

(0)
0 EQ

[
H̃
]

= πH , and S(d+1)
T = S

(0)
T H̃ = H. The process (S̃(d+1)

t )Tt=0, where
S̃

(d+1)
t = EQ

[
H̃ | Ft

]
, is a Q-martingale. Since Q is an EMM for the original market, and

(S̃(d+1)
t )Tt=0 is a Q-martingale, Q is an EMM for the extended market as well. By the First

Fundamental Theorem of Asset Pricing, the extended market is arbitrage-free, and thus
πH ∈ Π(H).
To show that Π(H) is non-empty, note that since the market is arbitrage-free, there exists
at least one EMM Q ∈ P . If EQ

[
H̃
]
< ∞, then πH = EQ

[
H̃
]

is an arbitrage-free price.
If EQ

[
H̃
]

=∞, we can consider truncated payoffs H̃ ∧n for n ∈ N, and proceed similarly.
Furthermore, the expressions for inf Π(H) and sup Π(H) follow directly from (25).

Note that ifH is attainable, then it follows from Theorem 2.6 that Π(H) =
{
WH

0

}
, i.e., the

set of arbitrage-free prices is a singleton, where WH
0 is given by (23). In sharp contrast,

the following theorem asserts that the set of arbitrage-free prices for a non-attainable
contingent claim is an open interval.

2.1.4 Arbitrage-Free Prices

We have solved the pricing problem for any attainable European contingent claim H in
Theorem 2.6, where we observed that there exists a unique fair price W̃H

0 for the claim
at t = 0. In this section, we show that if a claim is non-attainable in an arbitrage-free
market, then there exists an entire open interval of prices such that the extended market
remains arbitrage-free.

Definition 2.9. A real number πH ≥ 0 is called an arbitrage-free price of a
contingent claim H if there exists a stochastic process S(d+1) satisfying

i) S
(d+1)
0 = πH ,

ii) S
(d+1)
t ≥ 0 P-almost surely for all t = 0, 1, . . . , T ,

iii) S
(d+1)
T = H P-almost surely,

and such that the extended market (Ω,F ,P,F, (S(0), . . . , S(d), S(d+1))) is arbitrage-
free. Furthermore, we denote the set of all such arbitrage-free prices of H as Π(H).

Remark 2.10. Note that the definition of an arbitrage-free price assumes that the
extended market (Ω,F ,P, {Ft}t≥0, (S(0), . . . , S(d), S(d+1))) is still a financial market.
By our convention of frictionless markets, we implicitly assume that we can trade
the derivative S(d+1) at any trading time in arbitrary quantities without transaction
costs or market impact. This assumption is valid for plain vanilla options (such
as European put and call options) on large, liquid underlyings like the S&P 500
index, where options markets are deep and liquid. However, for less liquid options,
this arbitrage-free pricing criterion is not directly applicable because the derivative
cannot be traded freely in arbitrary quantities without affecting the market price.
In such cases, the assumption of frictionless trading breaks down. Despite this, the
arbitrage-free pricing methodology is still used in practice as an approximation.
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We denote by P the set of all equivalent martingale measures (EMMs) of the financial
market (Ω,F ,P,F, X). The following theorem is fundamental for solving the pricing
problem for non-attainable contingent claims.

Theorem 2.11. Let Π(H) denote the set of arbitrage-free prices of a European
contingent claim H. Then Π(H) is non-empty and can be expressed as

Π(H) =
{
EQ

[
H̃
]

: Q ∈ P , EQ
[
H̃
]
<∞

}
. (25)

Furthermore, we have inf Π(H) = infQ∈P EQ
[
H̃
]

and sup Π(H) = supQ∈P EQ
[
H̃
]
.

Proof. Suppose πH ∈ Π(H). By the definition of an arbitrage-free price πH , the market
(Ω,F ,P,F , (S(0), S(1), . . . , S(d), S(d+1))) is arbitrage-free. Consequently, by the First Fun-
damental Theorem of Asset Pricing (Theorem 1.18), there exists an equivalent martingale
measure Q such that for all i = 1, 2, . . . , d+ 1, we have

S̃
(i)
t = EQ

[
S̃

(i)
T |Ft

]
, ∀t = 0, 1, . . . , T.

In particular, when i = 1, 2, . . . , d, we observe that (S̃(i)
t )t∈T are Q-martingales, indicating

that Q ∈ P . Thus, Q is also an equivalent martingale measure for the original market
and we have

πH = EQ

[
S̃

(d+1)
T |F0

]
= EQ

[
H̃|F0

]
= EQ

[
H̃
]
<∞,

which implies that πH ∈
{
EQ

[
H̃
]

: Q ∈ P ∧ EQ

[
H̃
]
<∞

}
.

Conversely, if πH = EQ

[
H̃
]

for some Q ∈ P , we define

X
(d+1)
t := EQ

[
H̃|Ft

]
, for t = 0, 1, . . . , T.

Note that the so defined process (X(d+1)
t )t∈T satisfies all the requirements of Defintion 2.9.

In particular, it is a Q-martingale, which means that Q is also an equivalent martingale
measure for the extended market (Ω,F ,P,F, (S(0), S(1), . . . , S(d), S(d+1))). Hence, by the
FFTAP, the market is arbitrage-free and πH ∈ Π(H).
To demonstrate that Π(H) is non-empty, let P ∼ P̃ such that E

P̃

[
H̃
]
<∞, e.g, we could

choose dP̃ = c(1 + H̃)−1 dP for some normalizing constant c. If the original market is
arbitrage-free under P, then it is also arbitrage-free under P̃. Therefore, by the Funda-
mental Theorem of Asset Pricing, there exists an equivalent martingale measure Q ∼ P̃
such that the Radon-Nikodym derivative dQ

dP̃
is bounded, and we have

EQ

[
H̃
]

= EP̃

[
H̃

dQ
dP̃

]
<∞.

This confirms the non-emptiness of Π(H).
That inf Π(H) = infQ∈P EQ

[
H̃
]

follows immediately from (25) and Π(H) ̸= ∅.
To establish the upper bound, we need to show that if there exists Q ∈ P such that
EQ

[
H̃
]

= ∞, then for all R > 0 there exists an arbitrage-free price πH ∈ Π(H) with
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πH > R. To this end, let n ∈ N be such that π̃n := EQ
[
H̃ ∧ n

]
> R (which exists by

monotone convergence) and define

X
(d+1)
t := EQ

[
H̃ ∧ n|Ft

]
, for t = 0, 1, . . . , T.

Then X
(d+1)
0 = π̃n and Q is an equivalent martingale measure for the extended market

(Ω,F ,P,F, (S(0), S(1), . . . , S(d), S(d+1))). By the FFTAP, it is arbitrage-free. In particular,
by the first part of this theorem (applied to the extended market), there exists an Q′ ∼ Q
such that π̃n = EQ′

[
H̃
]
< ∞. However, Q′ is also an equivalent martingale measure

for the original market (Ω,F ,P,F, (S(0), S(1), . . . , S(d))). Thus, π̃ := EQ′

[
H̃
]

is also an
aribtrage-free price for the original market, and hence

πH = EQ′

[
H̃
]
≥ EQ′

[
H̃ ∧ n

]
= EQ′

[
X

(d+1)
T

]
= X

(d+1)
0 = π̃n > R,

which yields a price πH with the desired properties.

Note that ifH is attainable, then it follows from Theorem 2.6 that Π(H) =
{
WH

0

}
, i.e., the

set of arbitrage-free prices is a singleton, where WH
0 is given by (23). In sharp contrast,

the following theorem asserts that the set of arbitrage-free prices for a non-attainable
contingent claim is an open interval.

Theorem 2.12. For any European contingent claim H, if H is not attainable, then
Π(H) is an open interval, i.e.,

Π(H) = (inf Π(H), sup Π(H)) ,

and moreover, inf Π(H) < sup Π(H).

Proof. First, recall that

Π(H) =
{
EQ

[
H̃
]
| Q ∈ P , EQ

[
H̃
]
<∞

}
,

where H̃ = H/S
(0)
T is the discounted contingent claim.

Since P is convex and the mapping Q 7→ EQ

[
H̃
]

is linear, it follows that Π(H) is an
interval. We will show that Π(H) is open by constructing, for any π ∈ Π(H), arbitrage-
free prices π̌ and π̂ such that π̌ < π < π̂.
Let Q ∈ P be such that π = EQ

[
H̃
]
. Define the process

Ut := EQ

[
H̃ | Ft

]
, t = 0, 1, . . . , T.

Then Ut is a Q-martingale with U0 = π and UT = H̃. We can write

H̃ = U0 +
T∑
t=1

(Ut − Ut−1) .

Since H is not attainable, there must exist some t ∈ {1, 2, . . . , T} such that Ut−Ut−1 /∈ Kt,
where

Kt :=
{
η⊺
(
S̃t − S̃t−1

)
| η ∈ L0

(
Ω,Ft−1,Q;Rd

)}
.
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Here, L0
(
Ω,Ft−1,Q;Rd

)
denotes the set of Rd-valued, Ft−1-measurable random variables.

Note that Kt is a closed linear subspace of L1 (Ω,Ft,Q). By the Hahn-Banach theorem,
there exists a Z ∈ L∞ (Ω,Ft,Q) such that

EQ [WZ] = 0 for all W ∈ Kt, and EQ [(Ut − Ut−1)Z] > 0.

Without loss of generality, we can assume that ∥Z∥∞ ≤ 1
3 . Define

Ẑ := 1 + Z − EQ [Z | Ft−1] .

Then Ẑ is positive and satisfies EQ
[
Ẑ | Ft−1

]
= 1. Therefore, Ẑ can be used to define a

new probability measure Q̂ equivalent to Q via

dQ̂
dQ

∣∣∣∣∣
FT

= Ẑ.

We now compute

EQ̂

[
H̃
]

= EQ
[
H̃Ẑ

]
= EQ

[(
U0 +

T∑
s=1

(Us − Us−1)
)
Ẑ

]

= U0EQ

[
Ẑ
]

+
T∑
s=1

EQ

[
(Us − Us−1) Ẑ

]

= U0 +
T∑
s=1

EQ

[
(Us − Us−1) Ẑ

]
,

since EQ

[
Ẑ
]

= 1.
For s ̸= t, note that Ẑ is Ft-measurable, and Us − Us−1 is Fs-measurable, with s ̸= t.
Therefore, for s ̸= t, EQ

[
(Us − Us−1) Ẑ

]
= EQ [Us − Us−1]EQ

[
Ẑ
]

= 0.
Thus,

EQ̂
[
H̃
]

= U0 + EQ
[
(Ut − Ut−1) Ẑ

]
= π + EQ [(Ut − Ut−1) (1 + Z − EQ [Z | Ft−1])]
= π + EQ [(Ut − Ut−1)Z]− EQ [(Ut − Ut−1)EQ [Z | Ft−1]] .

Since Ut−1 is Ft−1-measurable, we have

EQ [(Ut − Ut−1)EQ [Z | Ft−1]] = EQ [EQ [Ut − Ut−1 | Ft−1]EQ [Z | Ft−1]] = 0,

because Ut is a Q-martingale.
Therefore,

EQ̂

[
H̃
]

= π + EQ [(Ut − Ut−1)Z] > π,

since EQ [(Ut − Ut−1)Z] > 0 by construction.
Moreover, since ∥Z∥∞ ≤ 1

3 , we have

1− 2
3 ≤ Ẑ ≤ 1 + 1

3 −
(
−1

3

)
= 5

3 ,
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so the Radon-Nikodym derivative dQ̂/dQ is bounded between 2
3 and 5

3 .
We now need to verify that Q̂ ∈ P , i.e., that under Q̂, the discounted asset price process
S̃ is a martingale.
For k ̸= t, since Ẑ is Ft-measurable, and Ẑ and S̃k − S̃k−1 are independent given Fk−1,
we have

EQ̂

[
S̃k − S̃k−1 | Fk−1

]
= EQ

[
S̃k − S̃k−1 | Fk−1

]
= 0.

For k = t, we have

EQ̂

[
S̃t − S̃t−1 | Ft−1

]
= EQ

[(
S̃t − S̃t−1

)
Ẑ | Ft−1

]
= EQ

[(
S̃t − S̃t−1

)
(1 + Z − EQ [Z | Ft−1]) | Ft−1

]
= EQ

[
S̃t − S̃t−1 | Ft−1

]
+ EQ

[(
S̃t − S̃t−1

)
Z | Ft−1

]
− EQ

[
S̃t − S̃t−1 | Ft−1

]
EQ [Z | Ft−1]

= 0 + 0− 0 = 0,

where we have used the fact that EQ

[
S̃t − S̃t−1 | Ft−1

]
= 0 (since S̃ is a Q-martingale)

and EQ

[(
S̃t − S̃t−1

)
Z | Ft−1

]
= 0 (since Z is orthogonal to Kt). Therefore, under Q̂, the

discounted asset price process S̃ is a martingale, so Q̂ ∈ P . Similarly, we can construct
an equivalent martingale measure Q̌ such that π̌ := EQ̌

[
H̃
]
< π.

Define
dQ̌
dQ

:= 2− dQ̂
dQ .

Since dQ̂
dQ takes values between 2

3 and 5
3 , the density dQ̌

dQ takes values between 1
3 and 4

3 , so
Q̌ is a probability measure equivalent to Q. Furthermore, since Q ∈ P and Q̂ ∈ P , it
follows that Q̌ ∈ P (the set P is convex).
Finally, we have

π̌ = EQ̌

[
H̃
]

= EQ

[
H̃

(
2− dQ̂

dQ

)]
= 2EQ

[
H̃
]
− EQ̂

[
H̃
]
< π,

since EQ̂

[
H̃
]
> EQ

[
H̃
]
.

Thus, we have found π̌ < π < π̂ with π̌, π̂ ∈ Π(H), showing that Π(H) is an open
interval. Moreover, since Π(H) is non-empty and contains more than one point, we have
inf Π(H) < sup Π(H).

2.2 EMM Consistent with Market Prices
Theorem 2.12 tells us that for a non-attainable claim, there is an entire interval of
arbitrage-free prices. Hence, speaking of the price of a contingent claim is not possi-
ble in such cases, and the pricing problem is not uniquely solved. In practice, one can
use an equivalent martingale measure that is consistent with observed market prices of
liquidly traded options.
Indeed, suppose we observe market prices of a set of European call options with different
strikes Ki and expiry dates Ti, for i = 1, . . . ,M . Denote the observed market prices by

24



{Ĉ(Ti, Ki) : i = 1, . . . ,M}. We can attempt to choose an equivalent martingale measure
Q such that, for each i,

Ĉ(Ti, Ki) = e−rTi EQ [HTi,Ki
] , (26)

where HTi,Ki
= (STi

−Ki)+ is the payoff of the European call option at time Ti, and r is
the risk-free interest rate. By matching the discounted expected payoffs under Q to the
observed option prices, we ensure that the equivalent martingale measure Q is consistent
with the market prices of these options.
However, it might be the case that no such Q exists, especially if the market prices do
not align perfectly with any model. In such situations, we can choose Q that minimizes
the discrepancy between the model prices and the observed market prices. Specifically,
we can solve the optimization problem:

Q∗ = arg min
Q∈P

M∑
i=1

(
e−rTi EQ [HTi,Ki

]− Ĉ(Ti, Ki)
)2
, (27)

where P is a set of equivalent martingale measures, often parameterized by a set of
parameters in a chosen model for the asset price process (St)t∈T. This procedure is called
calibration to market option prices.
Typically, the set of equivalent martingale measures P is parameterized by the parameters
of the asset price model we are using. For example, in a stochastic volatility model like the
Heston model, P would depend on parameters such as the initial volatility, mean-reversion
rate, long-term variance level, volatility of volatility, and the correlation between the asset
price and volatility processes. By adjusting these parameters, we can generate different
equivalent martingale measures within the model.
Calibration involves finding the parameter values that make the model’s theoretical option
prices match the observed market prices as closely as possible. This is typically done using
numerical optimization methods, as the relationship between the model parameters and
the option prices can be complex and non-linear.

Example: Calibrating the Heston Model

Consider calibrating the Heston stochastic volatility model to market option prices. The
Heston model assumes that the asset price St and the variance process vt evolve according
to:

dSt = rSt dt+√vt St dW S
t ,

dvt = κ(θ − vt) dt+ σv
√
vt dW

v
t ,

where W S
t and W v

t are Brownian motions with correlation ρ, r is the risk-free interest
rate, κ is the mean-reversion rate of the variance, θ is the long-term variance, σv is the
volatility of volatility, and vt is the instantaneous variance.
Under the risk-neutral measure Q, the drift of St is adjusted to r, ensuring that discounted
asset prices are martingales. The model parameters (κ, θ, σv, ρ, v0) define the dynamics
under Q.
To calibrate the model, we adjust the parameters (κ, θ, σv, ρ, v0) to minimize the difference
between the model prices and the observed market prices:

min
κ,θ,σv ,ρ,v0

M∑
i=1

(
Cmodel(Ti, Ki;κ, θ, σv, ρ, v0)− Ĉ(Ti, Ki)

)2
, (28)

where Cmodel(Ti, Ki;κ, θ, σv, ρ, v0) denotes the theoretical price of the option computed
under the Heston model with the given parameters.
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2.3 Complete Markets
An arbitrage-free market in which every European contingent claim is attainable would
be ideal from an efficiency perspective, as every claim would then have a unique price
process. It makes sense to define such an efficient market:

Definition 2.13. An arbitrage-free market (Ω,F ,P, {Ft}Tt=0, X) is called complete
if every European contingent claim H ∈ L0,+(FT ) is attainable.

Following Definitions 2.5 and 2.13, an arbitrage-free market (Ω,F ,P, {Ft}Tt=0, X) is com-
plete if and only if for all H ∈ L0,+(FT ) there exists a self-financing trading strategy
φ = (W0, ϕ) such that

H = W0 + (ϕ •X)T , P-almost surely.

If the market is complete, then by risk-neutral pricing we see that

W̃H
t = EQ

[
H̃ | Ft

]
= W̃0 + (ϕ • S̃)t,

for any H ∈ L0,+(FT ) and Q ∈ P , i.e., the Q-martingale (W̃H
t )Tt=0 can be represented as

a sum of a stochastic integral (ϕ • S̃) and a constant W̃0. It is therefore valuable to make
the connection between the definition of complete markets and the concept of integral
representations discussed in, e.g., Section 8 of Peter Spreij’s lecture notes on “Stochastic
Integration”.

2.3.1 The Second Fundamental Theorem of Asset Pricing

Theorem 2.14 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free
financial market (Ω,F ,P,F, X) is complete if and only if there exists a unique equiv-
alent martingale measure.

Proof. Assume first that the market is complete. Then every contingent claim H ∈
L0,+(FT ) is attainable, and therefore by Theorem 2.6 there exists a unique fair price
process (W̃H

t )Tt=0 such that for any Q ∈ P we have

W̃H
t = EQ

[
H̃ | Ft

]
, for every t = 0, 1, . . . , T.

In particular, this holds for the claims H̃ = 1F for any F ∈ FT , which for t = 0 yields

W̃H
0 = EQ [1F | F0] = EQ [1F ] = Q(F ),

for any Q ∈ P . Since the initial price W̃H
0 is uniquely determined (due to the Law

of One Price), it follows that Q(F ) is uniquely determined for all F ∈ FT . Therefore,
all equivalent martingale measures coincide, and hence there exists a unique equivalent
martingale measure.
Conversely, suppose that there exists only one equivalent martingale measure Q′. By
Theorem 2.11, the set of arbitrage-free prices of any European contingent claim H is
given by

Π(H) =
{
EQ

[
H̃
]

: Q ∈ P
}
.
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Since P = {Q′}, we have Π(H) =
{
EQ′

[
H̃
]}

, which is a singleton. By Theorem 2.12, if H
were not attainable, then Π(H) would be an open interval. Therefore, every contingent
claim H must be attainable, and thus the market is complete.

Theorem 2.15 (Characterization of Complete Markets). For an equivalent martin-
gale measure Q ∈ P , the following conditions are equivalent:

i) P = {Q}.

ii) Q is an extreme point of P , the set of all equivalent martingale measures.

iii) Q is an extreme point of Q, the set of all martingale measures.

iv) Every Q-martingale (Mt)Tt=0 can be represented as a discrete stochastic integral
with respect to S̃, i.e., there exists a predictable process (ϕt)Tt=1 such that

Mt = M0 +
t∑

k=1
ϕ⊺
k(S̃k − S̃k−1), for t = 0, 1, . . . , T.

Proof. i)⇒ iii): Suppose that Q is not an extreme point ofQ, i.e., there exist Q1,Q2 ∈ Q,
Q1 ̸= Q2, and α ∈ (0, 1) such that

Q = αQ1 + (1− α)Q2.

Since Q1 and Q2 are martingale measures, but not necessarily equivalent to P, they
may not be in P . However, since Q is equivalent to P, both Q1 and Q2 are absolutely
continuous with respect to Q, and hence with respect to P. Therefore, they are also in P ,
contradicting the assumption that P = {Q}. Thus, Q must be an extreme point of Q.
iii) ⇒ ii): This follows immediately since P ⊆ Q, and any extreme point of Q that
belongs to P is also an extreme point of P .
ii) ⇒ i): Suppose that Q is an extreme point of P , but that P contains some Q̂ ̸= Q. We
will derive a contradiction. The idea is to first show that if a distinct measure Q̂ exists,
we can choose it so that the density dQ̂/dQ is bounded by some constant c.
Once we have such a measure Q̂, define another measure Q′ by

dQ′

dQ
:= 1 + ϵ

(
dQ̂
dQ
− 1

)

for some ϵ > 0 small enough (specifically, ϵ < 1/c). Then Q′ is also an EMM and Q can
be expressed as a strict convex combination of Q̂ and Q′, contradicting the extremity of
Q. Thus, no other measure Q̂ exists, proving that P = {Q}.
i)⇒ iv): Let (Mt)Tt=0 be any Q-martingale. Then the terminal valueMT is FT -measurable
and integrable under Q. Since the market is complete, any contingent claim is attainable,
so there exists a self-financing strategy ϕ such that

MT = M0 +
T∑
k=1

ϕ⊺
k(S̃k − S̃k−1), Q-almost surely.

27



Therefore, the process

Mt = M0 +
t∑

k=1
ϕ⊺
k(S̃k − S̃k−1), t = 0, 1, . . . , T,

is a Q-martingale, and since MT equals both representations, they must coincide. Hence,
every Q-martingale can be represented as a stochastic integral with respect to S̃.
iv) ⇒ i): Suppose that every Q-martingale admits a representation as a stochastic
integral with respect to S̃. Let H be any non-negative FT -measurable random variable
with EQ[H] <∞. Then the process

Mt = EQ [H | Ft] , t = 0, 1, . . . , T,

is a Q-martingale, and by assumption, can be represented as

Mt = M0 +
t∑

k=1
ϕ⊺
k(S̃k − S̃k−1).

Therefore, H = MT can be replicated by the self-financing strategy ϕ, and hence is
attainable. Since this holds for any H, the market is complete, and by the Second Funda-
mental Theorem of Asset Pricing, there is a unique equivalent martingale measure, i.e.,
P = {Q}.

2.3.2 Complete Markets in Finite Discrete Time Have Finite Proba-
bility Spaces

We call A ∈ F an atom of (Ω,F ,P) whenever P(A) > 0 and for each B ∈ F with B ⊆ A,
we have either P(B) = 0 or P(B) = P(A). We have the following important result on the
structure of complete discrete-time financial markets with finite time horizon:

Proposition 2.16. Let (Ω,F ,P,F, X) be a discrete-time financial market with finite
time horizon T ∈ N0 and d ∈ N assets. If (Ω,F ,P,F, X) is complete, then (Ω,F ,P)
can be decomposed into at most (d + 1)T atoms, and dimL0(Ω,F ,P) ≤ (d + 1)T
holds true. d

Proof. We proceed by induction over T ∈ N0.
Base case: For T = 1 and assuming the market is complete, then for every H ∈
L0,+(Ω,F1), we have

H = W0(φ) + φ⊺
1∆S1, P-a.s.

As F0 is trivial and W0(φ), φ1, and S0 are F0-measurable, they are constants, yielding

H = constant + φ⊺
1∆S1.

The random variable ∆S1 is F1-measurable, and therefore L0,+(Ω,F1) is spanned by the
d + 1 random variables ∆S(0)

1 , . . . ,∆S(d)
1 . Consequently, we have dimL0(Ω,F) ≤ d + 1,

and by by Proposition C.1 the dimension of L0(Ω,F) coincides with the number of atoms
of (Ω,F ,P), the assertion follows for T = 1.
Inductive step: Assume the statement holds for T − 1. We will show it holds for T .

28



For H ∈ L0(Ω,FT ), since the market is complete, H can be expressed as

H = W0(φ) +
T∑
k=1

φ⊺
k∆Sk = WT−1(φ) + φ⊺

T∆ST ,

where WT−1(φ), φT , and ST−1 are all FT−1-measurable and hence constant on each of the
at most (d+ 1)T−1 atoms (Ai)(d+1)T −1

i=1 of (Ω,FT−1,P).
On each atom Ai, the values of WT−1(φ) and φT are constants. Therefore, on each Ai, H
can be expressed as

H|Ai
= constant + φ⊺

T∆ST |Ai
.

The function H|Ai
is again represented by the linear combination of the d + 1 variables

∆S(0)
T |Ai

, . . . ,∆S(d)
T |Ai

on Ai. Therefore, by the same argument as before, FT |Ai
has at

most d+ 1 atoms.
Since there are at most (d + 1)T−1 atoms Ai at time T − 1, and each can be partitioned
into at most d + 1 atoms at time T , the total number of atoms at time T is at most
(d+ 1)T−1 × (d+ 1) = (d+ 1)T . Therefore, dimL0(Ω,FT ,P) ≤ (d+ 1)T . This completes
the induction.

2.4 Superhedging
One might consider that instead of searching for a replicating strategy, the seller of a
contingent claim could construct a strategy that ensures the terminal wealth exceeds the
claim payoff. This leads to the concept of superhedging.

Definition 2.17. A self-financing strategy φ = (W0, ϕ) is called a superhedge of a
European contingent claim H if WT (φ) ≥ H P-almost surely. The initial capital W0
is called a superhedge price.

Although using a superhedge is beneficial for the seller (since it covers the liability of
paying H at time T ), the superhedge price that the seller charges is generally not an
arbitrage-free price, as the following proposition shows.

Proposition 2.18. For any European contingent claim H we define the cheapest
superhedge price πsuper(H) as

πsuper(H) := inf {W0 ∈ R | ∃ self-financing φ = (W0, ϕ) s.t.WT (φ) ≥ H P-a.s.} .

Then,

πsuper(H) ≥ sup Π(H).

If there exists a self-financing strategy φ = (πsuper(H), ϕ) such that WT (φ) ≥ H
P-almost surely, we call φ a cheapest superhedge of the claim H.

Proof. Let φ = (V0, ϕ) be a self-financing strategy such that WT (φ) ≥ H P-almost surely.
Let Q be any equivalent martingale measure (i.e., Q ∈ P). Then, since the discounted

29



wealth process W̃t(φ) = Wt(φ)/S(0)
t is a Q-supermartingale (because it is self-financing

and S̃ is a Q-martingale), we have

W0 = W̃0(φ) ≥ EQ
[
W̃T (φ)

]
≥ EQ

[
H̃
]
.

Taking the supremum over all Q ∈ P , we obtain

W0 ≥ sup
Q∈P

EQ
[
H̃
]

= sup Π(H).

Since πsuper(H) is the infimum of such W0, it follows that πsuper(H) ≥ sup Π(H).

2.5 Pricing and Hedging in the Cox-Ross-Rubinstein Model
We now construct the Cox-Ross-Rubinstein (CRR) model on a so-called canonical prob-
ability space. In this model, we have d = 1 and set the bank account S(0)

t = (1 + r)t for
t = 0, 1, . . . , T , for some fixed interest rate r > −1. We have only one risky asset with
price process (S(1)

t )Tt=0 := (St)Tt=0. In the CRR model, we assume that the return series
Rt = ∆St

St−1
for t = 1, 2, . . . , T can only assume two possible values called U (Up) and D

(Down) satisfying −1 < D < U . We define this model by

Ω := {−1,+1}T = {ω = (y1, y2, . . . , yT ) : yt ∈ {−1,+1}} ,

let Yt(ω) = yt for every ω = (y1, y2, . . . , yT ), and set

Rt(ω) = D
1− Yt(ω)

2 + U
1 + Yt(ω)

2 ,

and for some fixed S0 > 0, set

St(ω) = S0

t∏
k=1

(1 +Rk(ω)), S̃t(ω) = S0

t∏
k=1

1 +Rk(ω)
1 + r

, t = 0, 1, . . . , T. (29)

As a filtration F, we choose Ft = σ(S0, S1, . . . , St) = σ(Y1, Y2, . . . , Yt) for t = 0, 1, . . . , T ,
and note that F0 = {∅,Ω} and set F := FT . Lastly, let P be a probability mea-
sure on (Ω,F) such that P({ω}) > 0 for all ω ∈ Ω. We call the financial market
(Ω,F ,P,F, (S(0), S(1))) the canonical CRR model.

2.5.1 The Arbitrage-Free and Complete CRR Model

Note that according to Proposition 2.16, there is hope that the CRR model is complete
since the number of atoms in (Ω,F ,P) is exactly (d+ 1)T = 2T , so right at the boundary.
In particular, if there were a time when the risky asset could assume three different values
with non-trivial probability, then such a multinomial model could not be complete. The
following theorem yields a sufficient and necessary condition for the CRR model being
complete.

Theorem 2.19. Let (Ω,F ,P,F, (S(0), S(1))) denote the Cox-Ross-Rubinstein (CRR)
model as above. Then the model is arbitrage-free if and only if D < r < U . Under
this condition, the model is complete, and its unique equivalent martingale measure Q
is characterized by the fact that the random variables R1, R2, . . . , RT are independent
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under Q and satisfy

Q(Rt = U) = r −D
U −D

, ∀t = 1, 2, . . . , T.

Proof. Recall that a measure Q on (Ω,F) is a martingale measure for the financial mar-
ket (Ω,F ,P,F, (S(0), S(1))) if and only if the discounted price process S̃ := (S̃t)Tt=0 is a
martingale under Q. In the context of the CRR model, this condition implies that for all
t = 0, 1, . . . , T − 1, we have

S̃t = EQ
[
S̃t+1 | Ft

]
Q-almost surely.

By inserting (29), this condition reads as

S̃t = S̃tEQ

[1 +Rt+1

1 + r
| Ft

]
,

which simplifies to

EQ [Rt+1 | Ft] = r Q-almost surely.

Since Rt+1 takes only the values U and D, we have

EQ [Rt+1 | Ft] = UQ(Rt+1 = U | Ft) +D (1−Q(Rt+1 = U | Ft)) .

Solving for Q(Rt+1 = U | Ft), we obtain

Q(Rt+1 = U | Ft) = r −D
U −D

.

Since the right-hand side does not depend on Ft, it follows that Q(Rt+1 = U | Ft) is
constant, and thus Rt+1 is independent of Ft under Q. Therefore, the Rt are independent
under Q, and

Q(Rt = U) = r −D
U −D

for all t = 1, 2, . . . , T.

For Q to be a probability measure (i.e., with 0 < Q(Rt = U) < 1), we require D < r < U .
Therefore, if the model is arbitrage-free (i.e., there exists an equivalent martingale measure
Q), then necessarily D < r < U . Conversely, if D < r < U , then we can define Q as
above, and since Q is equivalent to P (because Q(ω) > 0 for all ω), and the discounted
price process S̃ is a Q-martingale, the model is arbitrage-free. Moreover, since there is a
unique Q satisfying the martingale condition, the model is complete.

2.5.2 Pricing in the CRR Model

Let us consider an arbitrage-free CRR model and denote by Q its unique equivalent
martingale measure according to Theorem 2.19. As before, given any European contingent
claim H ∈ L0,+(Ω,FT ), we define its discounted version as H̃ = (S(0)

T )−1H. Observe that
we can express any contingent claim H̃ as a function of the risky asset paths since FT =
σ(S1, . . . , ST ), i.e., H̃ = h(S0, . . . , ST ) for some function h. The following proposition
holds true.
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Proposition 2.20. The unique fair price process (W̃H
t )Tt=0 of the claim H can be

written as

W̃H
t (ω) = wt(S0, S1(ω), . . . , St(ω)),

where

wt(x0, . . . , xt) = EQ

[
h
(
x0, . . . , xt, xt

S1

S0
, . . . , xt

ST−t

S0

)]
. (30)

Proof. Using risk-neutral pricing, we have

W̃H
t = EQ

[
H̃ | Ft

]
= EQ [h(S0, . . . , ST ) | Ft]

= EQ [h (S0, . . . , St, St+1, . . . , ST ) | Ft]

= EQ

[
h
(
S0, . . . , St, St

St+1

St
, . . . , St

ST
St

)
| Ft

]
.

Notice that for every s ∈ N, the random variable St+s/St is independent of Ft under Q
and has the same distribution as Ss/S0 = ∏s

k=1(1 + Rk). Therefore, we conclude, with
the help of Fubini’s theorem, that:

EQ

[
h
(
S0, . . . , St, St

St+1

St
, . . . , St

ST
St

)
| Ft

]
(ω)

= EQ

[
h
(
S0(ω), . . . , St(ω), St(ω)S1

S0
, . . . , St(ω)ST−t

S0

)]
,

which yields the assertion on the form of wt in (30).

Following Proposition 2.20, we observe that the wealth process W̃H is characterized by
the following recursion:W̃

H
T = H̃,

W̃H
t = EQ

[
W̃H
t+1 | Ft

]
, t = 0, 1, . . . , T − 1.

(31)

Consequently, for p = r −D
U −D

, the functions wt for t = 0, 1, . . . , T satisfy the recursion:

wT (x0, x1, . . . , xT ) = h(x0, . . . , xT ), (32)
wt(x0, x1, . . . , xt) = pwt+1(x0, . . . , xt, xt(1 + U))

+ (1− p)wt+1(x0, . . . , xt, xt(1 +D)), t = T − 1, T − 2, . . . , 0.
(33)

2.5.3 Hedging in the CRR Model

Definition 2.21. LetH be a European contingent claim and let (Ω,F ,P,F, (S(0), S(1)))
denote a complete CRR model. We define the delta hedge φ of H in this model as
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φt(ω) = ∆t(S0, S1(ω), . . . , St−1(ω)), where for t = 1, 2, . . . , T we set

∆t(x0, . . . , xt−1) := wt(x0, . . . , xt−1, xt−1(1 + U))− wt(x0, . . . , xt−1, xt−1(1 +D))
xt−1(U −D) .

(34)

Next, we show that the delta hedge is a replicating strategy for any claim H:

Proposition 2.22. The delta hedge φ in Definition 2.21 is a replicating strategy for
the European contingent claim H.

Proof. For all ω = (y1, y2, . . . , yT ), the strategy φ must satisfy

φt(ω)
(
S̃t(ω)− S̃t−1(ω)

)
= W̃H

t (ω)− W̃H
t−1(ω), (35)

where φt, S̃t−1, and W̃H
t−1 depend only on the first t − 1 components of ω. Fix t ∈

{1, 2, . . . , T} and consider two scenarios:

ω+ := (y1, y2, . . . , yt−1,+1, yt+1, . . . , yT ),
ω− := (y1, y2, . . . , yt−1,−1, yt+1, . . . , yT ).

In these scenarios, the asset price moves up or down at time t. The corresponding changes
in wealth are:

W̃H
t (ω+)− W̃H

t−1(ω) = φt(ω)
(
S̃t(ω+)− S̃t−1(ω)

)
,

W̃H
t (ω−)− W̃H

t−1(ω) = φt(ω)
(
S̃t(ω−)− S̃t−1(ω)

)
.

Subtracting these two equations, we obtain:

W̃H
t (ω+)− W̃H

t (ω−) = φt(ω)
(
S̃t(ω+)− S̃t(ω−)

)
.

Solving for φt(ω), we get:

φt(ω) = W̃H
t (ω+)− W̃H

t (ω−)
S̃t(ω+)− S̃t(ω−)

.

Note that:

S̃t(ω+) = S̃t−1(ω)× 1 + U

1 + r
,

S̃t(ω−) = S̃t−1(ω)× 1 +D

1 + r
.

Similarly, since W̃H
t (ω) = wt(S0, S1(ω), . . . , St(ω)), and St(ω±) = St−1(ω)(1+U or 1+D),

we have:

W̃H
t (ω+) = wt(S0, . . . , St−1(ω), St−1(ω)(1 + U)),

W̃H
t (ω−) = wt(S0, . . . , St−1(ω), St−1(ω)(1 +D)).
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Therefore,

φt(ω) = wt(x0, . . . , xt−1, xt−1(1 + U))− wt(x0, . . . , xt−1, xt−1(1 +D))
S̃t−1(ω)

(
1+U
1+r −

1+D
1+r

) .

Simplifying the denominator:

S̃t−1(ω)
(

1 + U − (1 +D)
1 + r

)
= S̃t−1(ω)U −D1 + r

.

Therefore,

φt(ω) = wt(x0, . . . , xt−1, xt−1(1 + U))− wt(x0, . . . , xt−1, xt−1(1 +D))
S̃t−1(ω)U−D

1+r

This confirms the formula in (34), and thus φ replicates H.

Remark 2.23. Note that for a discounted claim H̃ = h(ST ) with a payoff function
that increases with ST , the function wt given as

wt(x) = EQ

[
h
(
x
ST−t

S0

)]
, t = 0, 1, . . . , T,

is also increasing in x. Therefore, the delta hedge (34) is non-negative and does not
involve short selling.

Example 2.24 (Hedging and pricing a European call option in the CRR model).
Suppose we have a European call option with a payoff H = h(ST ), where ST repre-
sents the stock price at maturity T . The wealth process WH depends only on St for
all t = 0, 1, . . . , T , and WH

t (ω) = wt(St(ω)) for (wt)t∈T as given by (30), i.e.,

wt(xt) =
T−t∑
k=0

h
(
xt(1 +D)T−t−k(1 + U)k

)(T − t
k

)(
r −D
U −D

)k (
1− r −D

U −D

)T−t−k
,

and in particular, the unique arbitrage-free price πH is given by:

πH = w0(S0) =
T∑
k=0

h
(
S0(1 +D)T−k(1 + U)k

)(T
k

)(
r −D
U −D

)k (
1− r −D

U −D

)T−k
.

In particular, if H is the payoff of a discounted European call option, then

h(x) = (x−K)+

(1 + r)T ,

where K is the strike price.
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The unique arbitrage-free price of a European call option with strike K and maturity
T in the CRR model is given by:

πHEU = 1
(1 + r)T

T∑
k=0

(
S0(1 +D)T−k(1 + U)k −K

)+
(
T
k

)(
r −D
U −D

)k(
1− r −D

U −D

)T−k
.

The hedging strategy, φ, is given by φt(ω) = ∆t(S0, S1(ω), . . . , St−1(ω)), where ∆t is
the hedge ratio (or the option’s delta) at time t. The hedge ratio for all t = 1, 2, . . . , T
is determined as follows:

∆t(x0, . . . , xt−1) = (1 + r)t

(
wt
(
x0, . . . , xt−1(1 + U)

)
− wt

(
x0, . . . , xt−1(1 +D)

))
xt−1(1 + U)− xt−1(1 +D) .

(36)

The hedge ratio, ∆t, represents the number of shares of the underlying stock that
need to be held at each time step to replicate the option’s payoff.
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Incomplete Markets



Preface to Part II: In this second part of the course “Portfolio Theory”, we assume
an arbitrage-free financial market, denoted as (Ω,F ,P,F, X), encompassing (d + 1) ∈ N
tradable assets with a finite time horizon T ∈ N. The main assumptions in this part—and
indeed, the central challenge that we like to adress—is that the market is supposed to
be incomplete. Indeed, we saw in Proposition 2.16 that this is the typical situation in
the finite-discrete time setting, at least if one wants to model returns using continuous
distributions. But also in the continuous-time setting, in the realm of stochastic volatil-
ity models market incompletness poses major challenge, see the example of the Heston
stochastic volatility model.
The incompleteness of the market means that there exists a European contingent claim,
with pay-off function denoted by H ∈ L0,+(FT ), that is not attainable. In fact, if a mar-
ket is incomplete, then verifying whether an contingent claim is attainable is an infeasible
problem as one would need to identify or construct a replicating strategy for H. However,
there is in general no algorithm for that. Therefore, in markets characterized by incom-
pleteness, we should anticipate an entire interval of arbitrage-free prices for any claim H,
as described in Theorem 2.12. The incompleteness poses a new challenge for agents in a
financial market:

i) Agent Bank: Assume that a bank considers the option of selling an contigent claim
with pay-off H in an incomplete market. The bank is then confronted with the pricing
and hedging problem, i.e., it must decide what price π0 it charges for the claim H and,
secondly, it must trade according to a reasonable hedging strategy. In the incomplete
market setting these problems do not have a unique solution and in many situations,
mere arbitrage-free pricing does not yield a satisfactory answer to the two problems, as,
e.g., in the standard model the interval of arbitrage-free prices is very broad. The bank
therefore needs an additional criteria to decide on the price of the claim at time t = 0
charge, as well as what hedging strategy to follow.

ii) Agent Investor: Related to the problem that a bank faces when selling a contingent
claim, a investor who invests an initial capital W0 at time t = 0 into the d-risky assets
wants to maximize her terminal wealth WT (φ) = W0 + GT (ϕ), or some function of that,
following some optimal strategy ϕ. However, the terminal wealth WT (φ) is uncertain
and it is not clear what strategy φ is optimal, and in what sense the investor measures
optimality. Therefore, also the investor, without selling any contingent claim and knowing
what the inital investment is, is looking for a criteria to decide what an opitmal strategy
is.

Utility and Risk: To address the pricing, hedging and optimal investment problem
in the incomplete market setting, we introduce three criteria to find appropriate prices,
hedging and investment strategies. The first criteria that we discuss in this course is the
minimization of the L2-error or variance of hedging error; next we consider Risk Measures
(see Section 4) and Expected Utility (see Section 5).
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3 Variance-optimal Hedging
In an incomplete market setting, it is generally not possible to perfectly hedge every
European contingent claim. As a result, the fair price of an option is not unique but
spans an interval. One approach to determine a pricing and hedging criterion in this
context is to find an initial price W0 and a trading strategy ϕ that minimize the hedging
error W0 + GT (ϕ) −H at the terminal time T . A common way to quantify this error is
through the L2-norm. This method is known as quadratic or variance-optimal hedging.
Throughout this section, we assume that H is a non-negative, square-integrable European
contingent claim, i.e.,

H ∈ L2(Ω,FT ,P) ∩ L0,+(Ω,FT ).

Moreover, let X(i)
t ∈ L2(P) for all t = 0, 1, . . . , T and i = 1, 2, . . . , d denote the discounted

asset price processes. We define the set of square-integrable strategies S2 by

S2 :=
{
ϕ : ϕ is Rd-valued predictable process s.t. Gt(ϕ) ∈ L2(Ω,Ft,P) ∀t = 0, 1, . . . , T

}
.

(37)

Here, GT (ϕ) is the cumulative gain process up to time T , given by

GT (ϕ) =
T∑
t=1

ϕt∆Xt,

where ∆Xt = Xt −Xt−1.

Definition 3.1 (Variance-Optimal Strategy). A self-financing strategy φ∗ = (W ∗
0 , ϕ

∗)
with W ∗

0 ∈ R and ϕ∗ ∈ S2 is called a variance-optimal strategy for H if

EP

[
(W ∗

0 +GT (ϕ∗)−H)2
]
≤ EP

[
(W0 +GT (ϕ)−H)2

]
, (38)

for all W0 ∈ R and ϕ ∈ S2. That is, it minimizes the expected quadratic hedging
error among all self-financing strategies.

Recall that according to the self-financing condition, any pair (W0, ϕ) ∈ R×S2 defines a
self-financing strategy φ with wealth process

Wt(φ) = W0 +Gt(ϕ), t = 0, 1, . . . , T.

Consequently, W0 +GT (ϕ) in equation (38) equals WT (φ).
A variance-optimal strategy is not necessarily unique in terms of the trading strategy ϕ.
However, the following lemma shows that the (discounted) wealth processes of any two
variance-optimal strategies coincide.

Lemma 3.2. Any two variance-optimal hedging strategies φ and φ′ will have the
same (discounted) terminal wealth, i.e., WT (φ) = WT (φ′) P-a.s.

Proof. Assume, for contradiction, that there exist two variance-optimal strategies φ and
φ′ such that WT (φ) ̸= WT (φ′) on a set of positive probability. Consider the convex
combination of these strategies:

ψ = 1
2φ+ 1

2φ
′.
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Then ψ is also a self-financing strategy in S2 with initial wealth W ∗
0 . The terminal wealth

of ψ is
WT (ψ) = 1

2WT (φ) + 1
2WT (φ′).

Since the function x 7→ (x−H)2 is strictly convex, we have

EP

[(
WT (ψ)−H

)2
]
<

1
2EP

[(
WT (φ)−H

)2
]

+ 1
2EP

[(
WT (φ′)−H

)2
]

= EP

[(
WT (φ)−H

)2
]
,

since φ and φ′ are both variance-optimal strategies with the same minimal expected
squared error. This inequality contradicts the assumption that φ is variance-optimal.
Therefore, it must be that WT (φ) = WT (φ′) P-a.s.

Remark 3.3. While the terminal wealth WT (φ) is uniquely determined for variance-
optimal strategies, the trading strategies ϕ themselves may not be unique.

To simplify the discussion, we will henceforth assume that d = 1. In other words, we are
considering a market consisting of only one risky asset (alongside the bank account). A
variance-optimal hedge is any solution to the minimization problem:

min
{
EP

[(
W0 +GT (ϕ)−H

)2
]

: W0 ∈ R, ϕ ∈ S2
}
.

Our strategy is to first optimize over all ϕ ∈ S2 for a fixed W0 ∈ R and then subsequently
optimize over W0, hoping that this yields a variance-optimal hedge. Define the subspace:

GT :=
{
GT (ϕ) : ϕ ∈ S2

}
⊆ L2(Ω,FT ,P). (39)

If GT is a closed subset of L2(Ω,FT ,P), then a variance-optimal strategy in the risky
asset would be any ϕ∗ such that GT (ϕ∗) = P(H) P-a.s., where P denotes the orthogonal
projection onto GT . However, it is not obvious whether GT is closed or not. It turns out
that a simple relation between the conditional variance and the conditional expectation
of the increments of X yields a sufficient condition for the closedness of GT . For this, let
us denote the conditional variance of the increments of the asset price Xt as

σ2
t := Var(∆Xt|Ft−1), t = 1, . . . , T. (40)

Similarly, for the conditional expectation of the increments, we write

µt := EP [∆Xt|Ft−1] , t = 1, . . . , T. (41)

Proposition 3.4. If there exists a constant K > 0 such that

µ2
t ≤ Kσ2

t P-a.s. for all t = 1, . . . , T, (42)

then GT is a closed subspace of L2(Ω,FT ,P). The condition (42) is sometimes referred
to as the bounded mean-variance trade-off.
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Proof. Since X is square-integrable and adapted, there exists a martingale (Mt)t∈T and
a predictable process (At)t∈T as per the Doob decomposition theorem such that A0 = 0
and

Xt = At +Mt, for all t = 0, 1, . . . , T.
Note that

σ2
t = Var(∆Xt|Ft−1) = Var(∆Mt|Ft−1) = EP

[(
∆Mt

)2
|Ft−1

]
,

since ∆At = At − At−1 is Ft−1-measurable.
For any ϕ ∈ S2, the gain process satisfies

GT (ϕ) = GT−1(ϕ) + ϕT∆XT .

Thus,

EP
[
GT (ϕ)2

]
= EP

[
(GT−1(ϕ) + ϕT∆XT )2

]
= EP

[
GT−1(ϕ)2

]
+ 2EP [GT−1(ϕ)ϕT∆XT ] + EP

[
ϕ2
T (∆XT )2

]
. (43)

The cross term EP [GT−1(ϕ)ϕT∆XT ] can be simplified using the tower property and the
fact that GT−1(ϕ) and ϕT are FT−1-measurable:

EP [GT−1(ϕ)ϕT∆XT ] = EP [GT−1(ϕ)ϕTµT ] .

Similarly, the last term in (43) can be written as

EP

[
ϕ2
T (∆XT )2

]
= EP

[
ϕ2
TEP

[
(∆XT )2|FT−1

]]
= EP

[
ϕ2
T (σ2

T + µ2
T )
]
.

Combining these, we get

EP

[
GT (ϕ)2

]
= EP

[
GT−1(ϕ)2

]
+ 2EP [GT−1(ϕ)ϕTµT ] + EP

[
ϕ2
T (σ2

T + µ2
T )
]
. (44)

Now, consider a sequence (ϕn)n∈N ⊆ S2 such that GT (ϕn) converges in L2(Ω,FT ,P) to
some Z ∈ L2(Ω,FT ,P). Our goal is to show that Z ∈ GT .
First, observe that the sequence (GT (ϕn)) is Cauchy in L2. Using (44), we can write the
difference between GT (ϕn) and GT (ϕm) as

GT (ϕn)−GT (ϕm) =
T∑
t=1

(ϕnt − ϕmt )∆Xt.

Then,

EP

[
(GT (ϕn)−GT (ϕm))2

]
=

T∑
t=1

EP
[
(ϕnt − ϕmt )2

(
σ2
t + µ2

t

)]

≥
T∑
t=1

EP

[
(ϕnt − ϕmt )2 σ2

t

]
.

This inequality implies that (ϕnt σt)n∈N is a Cauchy sequence in L2(Ω,FT ,P) for each t.
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Define ϕt := limn→∞ ϕnt in L2 (up to a subsequence if necessary). Then, define

Ψt :=


ϕtσt
σ2
t

, on {σt > 0},

0, on {σt = 0}.

Note that Ψt is well-defined and Ft−1-measurable.
Using the bounded mean-variance trade-off condition (42), we have

σ2
t + µ2

t ≤ (1 +K)σ2
t .

Therefore,

EP
[
(ϕnt − ϕt)

2
(
σ2
t + µ2

t

)]
≤ (1 +K)EP

[
(ϕnt − ϕt)

2 σ2
t

]
= (1 +K)EP

[
(ϕnt σt − ϕtσt)

2
]

→ 0 as n→∞.

This implies that GT (ϕn) converges to GT (ϕ) in L2, so Z = GT (ϕ) ∈ GT . Therefore, GT
is closed in L2(Ω,FT ,P).

Remark 3.5. The bounded mean-variance trade-off condition (42) ensures that the
variance of the asset’s returns dominates its mean squared returns uniformly over
time. This condition is crucial for the closedness of GT , as it prevents the trading
strategies from becoming too ”explosive” in the presence of high expected returns
relative to volatility.

Proposition 3.6. Under the bounded mean-variance trade-off condition (42), there
exists a variance-optimal strategy φ∗ = (W ∗

0 , ϕ
∗). Moreover, such a variance-optimal

strategy is P-almost surely unique up to modifications of ϕ∗
t on the set {σt = 0} for

all t = 1, 2, . . . , T .

Proof. Since the bounded mean-variance trade-off condition (42) holds, Proposition 3.4
ensures that GT is a closed subspace of L2(Ω,FT ,P).
Let P : L2(P)→ GT denote the orthogonal projection onto GT . For any Z ∈ L2(P), P(Z)
is the unique element in GT satisfying

EP
[
(Z − P(Z))2

]
= min

Y ∈GT

EP

[
(Z − Y )2

]
.

For any W0 ∈ R, there exists ϕW0 ∈ Sd such that

GT (ϕW0) = P(H −W0).

This is because P(H −W0) ∈ GT by definition, and there exists a strategy ϕW0 such that
GT (ϕW0) = P(H −W0).
The expected squared hedging error is then

EP

[(
W0 +GT (ϕW0)−H

)2
]

= EP
[
(W0 + P(H −W0)−H)2

]
.
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Using the linearity of the projection operator, we have

P(H −W0) = P(H)−W0P(1),

where 1 denotes the constant function equal to 1.
Therefore,

W0 + P(H −W0)−H = W0 + (P(H)−W0P(1))−H
= (P(H)−H) +W0 (1− P(1)) .

Thus, the expected squared hedging error becomes

J(W0) = EP
[
((P(H)−H) +W0 (1− P(1)))2

]
.

This is a quadratic function in W0, since P(H)−H is independent of W0.
Since J(W0) is quadratic with respect to W0 and the coefficient of W 2

0 is non-negative
(and positive unless 1−P(1) = 0 almost surely), it attains its minimum at a unique value
W ∗

0 ∈ R. Therefore, the variance-optimal initial investment is W ∗
0 , and the corresponding

trading strategy is ϕ∗ = ϕW
∗
0 .

Suppose there are two variance-optimal strategies φ∗ = (W ∗
0 , ϕ

∗) and φ̃∗ = (W ∗
0 , ϕ̃

∗) that
achieve the same minimal variance, but differ on a set of positive probability.
Since both are variance-optimal:

GT (ϕ∗) = P(H −W ∗
0 ) = GT (ϕ̃∗).

Thus,
GT (ϕ∗ − ϕ̃∗) = 0.

Recall that GT (ϕ) = ∑T
t=1 ϕt∆Xt. So,

T∑
t=1

(ϕ∗
t − ϕ̃∗

t )∆Xt = 0 P-a.s.

Conditioning on Ft−1, the increment ∆Xt has variance σ2
t . If σt > 0 almost surely, the

only way for the above equality to hold is if ϕ∗
t − ϕ̃∗

t = 0 almost surely on that event.
Indeed, if σt > 0, ∆Xt can vary, forcing ϕ∗

t = ϕ̃∗
t almost surely.

If σt = 0 on some set, ϕt cannot be identified uniquely from GT (ϕ), and hence ϕ∗
t may

differ from ϕ̃∗
t on {σt = 0} without affecting the variance.

Therefore, the variance-optimal strategy is unique up to modifications on the sets where
σt = 0.

Under additional assumptions, we can construct variance-optimal strategies explicitly. In
particular, when the discounted asset price process X is a martingale under the probability
measure P, the variance-optimal strategy can be derived using martingale representation
theorems.
Recall that in the variance-optimal hedging problem, the goal is to find a self-financing
trading strategy φ = (W0, ϕ) that minimizes the expected squared hedging error given
by EP [(WT (φ)−H)2]. Note that the wealth process of a variance-optimal strategy corre-
sponds to the orthogonal projection of the discounted payoffH onto the space of attainable
terminal wealths generated by trading in the asset X. Specifically, we can decompose the
martingale Ŵt = EP[H | Ft] into components driven by X and orthogonal to X.
We have the following important result:
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Lemma 3.7 (Kunita-Watanabe Decomposition). Let (Yt)Tt=0 be a square-integrable
P-martingale, and let (Xt)Tt=0 be a square-integrable P-martingale. Then there exists
a predictable process ϕ and a square-integrable martingale M orthogonal to X (i.e.,
EP [∆Mt∆Xt | Ft−1] = 0 for all t), such that

Yt = Y0 +
t∑

s=1
ϕs∆Xs +Mt, t = 0, 1, . . . , T. (45)

Moreover, the decomposition is unique.

Proof. Since both Y and X are square-integrable martingales, we can consider their pre-
dictable covariation processes. Define the predictable process ϕ by

ϕt = EP [∆Yt∆Xt | Ft−1]
EP [(∆Xt)2 | Ft−1]

1{EP[(∆Xt)2|Ft−1]>0}, t = 1, . . . , T.

Define the process M by

∆Mt = ∆Yt − ϕt∆Xt, t = 1, . . . , T.

Note that

EP [∆Mt∆Xt | Ft−1] = EP [(∆Yt − ϕt∆Xt) ∆Xt | Ft−1]
= EP [∆Yt∆Xt | Ft−1]− ϕtEP

[
(∆Xt)2 | Ft−1

]
= 0,

by the definition of ϕt. Therefore, M is orthogonal to X. The Remainder is left as
Exercise 3.4.

Using this decomposition, we can construct the variance-optimal strategy explicitly when
X is a martingale.

Theorem 3.8. Assume that under P, the discounted asset price process X is a
square-integrable martingale, i.e., EP [∆Xt | Ft−1] = 0 for all t. Let H be a square-
integrable contingent claim, and let Ŵt = EP[H | Ft] be its P-martingale representa-
tion. Define the trading strategy φ∗ = (W ∗

0 , ϕ
∗) as

ϕ∗
t :=

EP

[
∆Ŵt∆Xt | Ft−1

]
EP [(∆Xt)2 | Ft−1]

1{EP[(∆Xt)2|Ft−1]>0}, t = 1, . . . , T,

and
W ∗

0 := Ŵ0 = EP[H].
Then, the trading strategy φ∗ is variance-optimal for hedging H, and the mean
squared hedging error is given by

EP

(W ∗
0 +

T∑
t=1

ϕ∗
t∆Xt −H

)2 =
T∑
t=1

EP

[
Var

(
∆Ŵt | Ft−1

)
− (ϕ∗

t )2Var (∆Xt | Ft−1)
]
.

Proof. Left as Exercise 3.4
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4 Risk Measures
A drawback of using the variance to measure the hedging error is that the variance is
symmetric; that is, positive and negative deviations from being a replicating strategy
are treated the same. However, a positive deviation, i.e., when WT (φ)(ω) − H(ω) > 0,
is actually favorable for the bank. Therefore, it would be better to use a measure that
focuses on the downside risk. This leads us to the concept of risk measures, which we
introduce in this section.

4.1 Monotonicity, Cash Invariance, Convexity, and Coherence

Definition 4.1. Let X denote a class of real-valued random variables on (Ω,F)
representing financial positions. We call a map ρ : X → R a risk measure if it
satisfies the following conditions for all X, Y ∈ X :

i) If X ≤ Y almost surely, then ρ(X) ≥ ρ(Y ) (monotonicity).

ii) For all m ∈ R, ρ(X +m) = ρ(X)−m (cash invariance).

If a risk measure ρ satisfies ρ(0) = 0, then we call it normalized. Additionally, if ρ
is convex, i.e., if

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀ 0 ≤ λ ≤ 1, (46)

then we call ρ a convex risk measure.

Remark 4.2.

i) A risk measure is monotone decreasing because the downside risk of a financial
position with a larger payoff profile is less than that of a position with a smaller
payoff.

ii) Cash invariance means that adding a riskless amount of cash m to a financial
position reduces the risk measure by m. This reflects the idea that holding cash
reduces risk, while owing cash (debt) increases risk.

iii) Convexity of a risk measure implies that diversification reduces risk. Specif-
ically, combining two financial positions should not increase the risk measure
beyond the weighted average of their individual risks.

Definition 4.3. A convex risk measure ρ is called a coherent risk measure if it is
also positive homogeneous and subadditive. Specifically, ρ satisfies:

i) ρ(λX) = λρ(X) for all λ ≥ 0 (positive homogeneity).

ii) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity).
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Remark 4.4. Coherence allows financial institutions to split up their financial po-
sition into smaller parts, assess the risk of each part, and then bound the total risk
by the sum of the risks of the parts. However, positive homogeneity means that the
financial risk grows linearly with its size, which may not always hold in real markets
due to economies or diseconomies of scale. Therefore, it is sometimes more appro-
priate to measure risk with non-coherent (convex but not coherent) risk measures.

4.2 Acceptance Sets of Risk Measures
Let X denote a set of discounted financial positions in a financial market (Ω,F ,P,F, X);
that is, X is a set of real-valued measurable functions defined on some set of outcomes Ω.
For instance, we could think of X = Lp(Ω,F ,P) for 1 ≤ p ≤ ∞.
Given a risk measure ρ : X → R, we define the acceptance set of ρ as

Aρ := {X ∈ X : ρ(X) ≤ 0}. (47)

We call a financial position X ∈ Aρ acceptable with respect to the risk measure ρ.
From the perspective of a supervisory agency, the risk ρ(X) of a financial position X
can be viewed as the minimal capital requirement that, when added to the position and
invested in a risk-free asset, makes the financial position acceptable. Indeed, ρ(X) is the
exact amount of capital that one has to add to the financial position X such that, by cash
invariance,

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0,

i.e., the adjusted position X + ρ(X) is acceptable (since it belongs to Aρ).
In the following proposition, we show some properties and connections between the ac-
ceptance set and the risk measure.

Proposition 4.5. Let ρ be a risk measure on the space of bounded measurable
functions X = L∞(Ω,F ,P). For the acceptance set Aρ, the following holds true:

i) Aρ is non-empty and closed in X equipped with the supremum norm ∥ · ∥∞.

ii) inf{m ∈ R : m1 ∈ Aρ} > −∞.

iii) If X ∈ Aρ and Y ∈ X with Y ≥ X, then Y ∈ Aρ.

iv) For all X ∈ X ,

ρ(X) = inf{m ∈ R : m+X ∈ Aρ}. (48)

v) ρ is convex if and only if Aρ is convex.

vi) ρ is positive homogeneous, i.e., ρ(λX) = λρ(X) for all λ ≥ 0, if and only if Aρ
is a cone; that is, λAρ ⊆ Aρ for all λ ≥ 0.

Proof. Let ρ : X → R be a monetary risk measure, where X = L∞(Ω,F ,P). Recall that ρ
being monetary means it is monotone and cash-invariant. The acceptance set associated
with ρ is defined as

Aρ := {X ∈ X : ρ(X) ≤ 0}.
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i) Non-emptiness and Closedness
Non-empty: Consider X = 0. If ρ(0) ≤ 0, then 0 ∈ Aρ. If ρ(0) > 0, define m := ρ(0). By
cash-invariance,

ρ(m1) = ρ(0)−m = 0,
so m1 ∈ Aρ. Hence, Aρ is non-empty.
Closedness: Let (Xn)n∈N ⊆ Aρ and suppose Xn → X in ∥ · ∥∞. Since ρ(Xn) ≤ 0 for all n
and ρ is Lipschitz continuous with respect to ∥·∥∞ (shown below), we have ρ(Xn)→ ρ(X).
Being a limit of non-positive numbers, ρ(X) ≤ 0, so X ∈ Aρ. Thus, Aρ is closed.
Lipschitz continuity of ρ: For X, Y ∈ X , since X ≤ Y + ∥X − Y ∥∞1, by monotonicity
and cash-invariance,

ρ(X) ≥ ρ(Y + ∥X − Y ∥∞1) = ρ(Y )− ∥X − Y ∥∞.

Reversing the roles of X and Y , we also get

ρ(Y ) ≥ ρ(X)− ∥X − Y ∥∞.

Combining these inequalities,

|ρ(X)− ρ(Y )| ≤ ∥X − Y ∥∞.

So ρ is 1-Lipschitz continuous.
ii) Boundedness of the Infimum
By cash-invariance,

ρ(m1) = ρ(0)−m.
Then

m1 ∈ Aρ ⇐⇒ ρ(m1) ≤ 0 ⇐⇒ ρ(0)−m ≤ 0 ⇐⇒ m ≥ ρ(0).
Hence,

inf{m ∈ R : m1 ∈ Aρ} = ρ(0) > −∞.
iii) Monotonicity of Aρ
If X ∈ Aρ and Y ∈ X with Y ≥ X, then by monotonicity,

ρ(Y ) ≤ ρ(X) ≤ 0,

so Y ∈ Aρ. Thus, Aρ is monotone.
iv) Representation of ρ via Aρ
For any X ∈ X ,

ρ(X) = inf{m : ρ(X +m1) ≤ 0} = inf{m : X +m1 ∈ Aρ}.

Rewriting X +m1 = m+X gives ρ(X) = inf{m ∈ R : m+X ∈ Aρ}, proving (48).
v) Convexity Equivalence
If ρ is convex, let X, Y ∈ Aρ and 0 ≤ λ ≤ 1. Then

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ≤ 0,

so λX + (1 − λ)Y ∈ Aρ. Thus Aρ is convex. Conversely, assume Aρ is convex. For
X, Y ∈ X , set mX = ρ(X),mY = ρ(Y ). Then by cash-invariance, X ′ := X + mX1 and
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Y ′ := Y + mY 1 satisfy ρ(X ′) = 0 and ρ(Y ′) = 0, so X ′, Y ′ ∈ Aρ. By convexity of Aρ,
Z := λX ′ + (1− λ)Y ′ ∈ Aρ =⇒ ρ(Z) ≤ 0. But

Z − (λmX + (1− λ)mY )1 = λX + (1− λ)Y.

Using cash-invariance,

ρ(λX + (1− λ)Y ) = ρ(Z − (λmX + (1− λ)mY )1) = ρ(Z) + λmX + (1− λ)mY

≤ λρ(X) + (1− λ)ρ(Y ).

Thus ρ is convex.
vi) Positive Homogeneity and Conic Property
If ρ is positive homogeneous, for λ ≥ 0 and X ∈ Aρ, ρ(λX) = λρ(X) ≤ 0, so λX ∈ Aρ.
Hence Aρ is a cone. Conversely, if Aρ is a cone, then for λ > 0,

m+ λX ∈ Aρ ⇐⇒
m

λ
+X ∈ Aρ.

Thus ρ(λX) = inf{m : m+ λX ∈ Aρ} = λ inf{m′ : m′ +X ∈ Aρ} = λρ(X).
We get immediatley that ρ(0) ≤ 0. Now, assume that ρ(0) = a, for a < 0 then by the
representation (48) we have infm∈ {m1 ∈ Aρ} = a but since Aρ is a cone, we also have
λa1 ∈ Aρ for arbitrarily large λ so that arbitrarily large negative constant positions are
acceptable, which can not be the case, so that a = 0 follows. This shows that positive
homogeneity of ρ and the conic property of Aρ are equivalent.

Conversely, one can start with an acceptance set A ⊆ X and define a risk measure based
on it. For a position X ∈ X , define the capital requirement as the minimal capital m ∈ R
that, when added to the position, makes it acceptable:

ρA(X) := inf{m ∈ R : m+X ∈ A}. (49)

Proposition 4.6. Assume that A is a nonempty subset of X satisfying:

a) If X ∈ A and Y ∈ X with Y ≥ X, then Y ∈ A (monotonicity).

b) There exists m0 ∈ R such that m01 ∈ A (boundedness from below).

Then, the functional ρA defined in (49) has the following properties:

i) ρA is a risk measure.

ii) If A is convex, then ρA is a convex risk measure.

iii) If A is a cone, then ρA is positive homogeneous. In particular, ρA is a coherent
risk measure if A is a convex cone.

iv) The acceptance set of ρA satisfies AρA = A, the closure of A with respect to
the supremum norm ∥ · ∥∞. In particular, AρA = A if and only if A is closed
in ∥ · ∥∞.
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Proof. i) ρA is a Risk Measure
Monotonicity: If X, Y ∈ X with Y ≥ X, then for any m ∈ R,

m+ Y ≥ m+X.

If m+X ∈ A, then by property (a), m+ Y ∈ A. Therefore,

ρA(Y ) = inf{m ∈ R : m+ Y ∈ A} ≤ inf{m ∈ R : m+X ∈ A} = ρA(X).

Cash Invariance: For any X ∈ X and m ∈ R,

ρA(X +m) = inf{k ∈ R : k +X +m ∈ A}
= inf{(k −m) +m+X +m ∈ A}
= inf{(k −m) +X + 2m ∈ A}
= ρA(X)−m.

Finiteness: Since A is nonempty and contains m01, we have for any X ∈ X ,

ρA(X) ≤ inf{m ∈ R : m+X ≥ m01}
= m0 − essinfX,

which is finite since X is bounded.
Similarly, for any X ∈ X ,

ρA(X) ≥ −∥X∥∞ − sup{m ∈ R : m1 ∈ A}.

Thus, ρA(X) is finite.
ii) Convexity of ρA
Suppose A is convex. Let X, Y ∈ X and mX ,mY ∈ R such that mX + X ∈ A and
mY + Y ∈ A. For 0 ≤ λ ≤ 1, consider

λ(mX +X) + (1− λ)(mY + Y ) = [λmX + (1− λ)mY ] + [λX + (1− λ)Y ] ∈ A,

since A is convex. Therefore,

ρA(λX + (1− λ)Y ) ≤ λmX + (1− λ)mY .

Taking the infimum over all mX and mY , we obtain

ρA(λX + (1− λ)Y ) ≤ λρA(X) + (1− λ)ρA(Y ).

Thus, ρA is convex.
iii) Positive Homogeneity of ρA
Suppose A is a cone. Let X ∈ X and λ ≥ 0. Then,

ρA(λX) = inf{m ∈ R : m+ λX ∈ A}.

Since A is a cone, m+ λX ∈ A if and only if λ−1(m+ λX) = λ−1m+X ∈ A. Thus,

ρA(λX) = inf{m ∈ R : λ−1m+X ∈ A} = λρA(X).

Therefore, ρA is positive homogeneous. The case λ = 0 follows as in the previous propo-
sition.
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If A is a convex cone, then ρA is both convex and positive homogeneous, hence a coherent
risk measure.
iv) Acceptance Set of ρA
First, note that

AρA = {X ∈ X : ρA(X) ≤ 0} = {X ∈ X : 0 +X ∈ A} = A.

Therefore, the acceptance set of ρA is exactly A.
However, if A is not closed in ∥·∥∞, then ρA might assign negative values to some X /∈ A,
which would imply that X ∈ AρA . To resolve this, consider the closure A of A.
Next, we show that AρA = A.
Step 1: A ⊆ AρA .
Let X ∈ A. Then, there exists a sequence (Xn)n∈N in A such that ∥Xn − X∥∞ → 0.
Since Xn ∈ A, ρA(Xn) ≤ 0 for all n. By the Lipschitz continuity of ρA, we have

|ρA(Xn)− ρA(X)| ≤ ∥Xn −X∥∞ → 0,

so ρA(X) ≤ 0. Therefore, X ∈ AρA .
Step 2: AρA ⊆ A.
Let X ∈ AρA , so ρA(X) ≤ 0. Then, for any ϵ > 0, there exists m ≤ ϵ such that m+X ∈ A.
Therefore,

X = (X +m)−m,

with X +m ∈ A and |m| ≤ ϵ. As ϵ→ 0, X +m→ X in ∥ · ∥∞, so X is a limit point of
A. Therefore, X ∈ A. Thus, AρA = A. In particular, AρA = A if and only if A is closed
in ∥ · ∥∞.

4.3 Examples of Risk Measures
In this section, we present several examples of popular risk measures used in financial risk
management.

Example 4.7 (Value-at-Risk (VaR)). Consider a probabilistic model (Ω,F ,P). A
financial position X is often considered acceptable if the probability of a loss does
not exceed a certain level λ ∈ (0, 1). Specifically, we define the Value-at-Risk at
confidence level 1− λ as:

VaR1−λ(X) := inf{m ∈ R : P(X +m < 0) ≤ λ}. (50)

Alternatively, VaR can be expressed in terms of the quantile function of X:

VaR1−λ(X) = −F−1
X (λ),

where F−1
X denotes the quantile function of X. The Value-at-Risk VaR1−λ is a pos-

itively homogeneous risk measure; however, it is not convex and, therefore, not a
coherent risk measure on L0(Ω,F ,P).
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Remark 4.8. VaR measures the minimum amount of capital that must be added
to the position X so that the probability of a loss exceeding zero is at most λ.
While VaR is widely used due to its simplicity and ease of calculation, it does
not account for the magnitude of losses beyond the VaR threshold.

Example 4.9 (Worst-Case Risk Measure). We define the worst-case risk measure
ρmax as

ρmax(X) = −essinfX = − inf
ω∈Ω

X(ω), ∀X ∈ X .

The acceptance set of ρmax is

Aρmax = {X ∈ X : X ≥ 0},

i.e., all financial positions that are almost surely non-negative. Thus, Aρmax is a
convex cone, and therefore, by Proposition 4.5 vi), ρmax is a coherent risk measure.

Remark 4.10. The risk measure ρmax is the most conservative among all nor-
malized risk measures ρ, since for any ρ satisfying ρ(0) = 0, we have

ρ(X) ≤ ρ(essinfX · 1) = ρ(0)− essinfX = ρmax(X).

Moreover, ρmax can be represented as the worst-case expected loss over all prob-
ability measures in M1:

ρmax(X) = sup
Q∈M1

EQ[−X],

where M1 is the set of all probability measures absolutely continuous with re-
spect to P such that Q concentrates its mass on the worst outcomes of X.

Example 4.11 (Sharpe Ratio and Mean-Standard Deviation Risk Measure). For an
asset with (discounted) payoff X1 ∈ L2(Ω,F ,P) and today’s price X0, the Sharpe
Ratio is defined as:

SR(X1) := E[X1 −X0]
σ(X1)

,

where σ(X1) is the standard deviation of X1.
We can define a financial position X ∈ L2(Ω,F ,P) as acceptable if its Sharpe Ratio
is at least a certain threshold c > 0. The corresponding acceptance set is:

AρSR =
{
X ∈ L2(Ω,F ,P) : E[X]−X0

σ(X) ≥ c

}
.

The associated risk measure, called the mean-standard deviation risk measure,
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is defined as:

ρSR(X) = −E[X] + c σ(X), ∀X ∈ L2(Ω,F ,P).

Remark 4.12. While ρSR is cash-invariant, positively homogeneous, and con-
vex, it is not monotone on all of L2(Ω,F ,P). This means that increasing the
payoff X does not necessarily decrease the risk measure ρSR(X), which contra-
dicts the monotonicity property required for a risk measure as per Definition 4.1.
Nevertheless, the mean-standard deviation risk measure is widely used in port-
folio optimization and risk assessment due to its connection with the Markowitz
mean-variance framework.

Example 4.13 (Conditional Value-at-Risk (CVaR) or Expected Shortfall). The Con-
ditional Value-at-Risk at confidence level 1−λ, also known as Expected Short-
fall, is defined as:

CVaR1−λ(X) = −1
λ

∫ λ

0
F−1
X (u) du,

where F−1
X is the quantile function of X. Alternatively, if X is a continuous random

variable, CVaR can be expressed as the conditional expectation:

CVaR1−λ(X) = −E [X | X ≤ −VaR1−λ(X)] .

CVaR is a coherent risk measure; it is convex, positively homogeneous, monotonic,
and cash-invariant.

Remark 4.14. CVaR provides a more comprehensive assessment of tail risk
compared to VaR. It accounts for the magnitude of losses in the tail of the loss
distribution.

Example 4.15 (Entropic Risk Measure). The entropic risk measure is defined
for a financial position X and a risk aversion parameter θ > 0 as:

ρent(X) = 1
θ

ln
(
E
[
e−θX

])
.

The entropic risk measure arises from exponential utility functions and captures the
investor’s risk aversion. It is convex and cash-invariant but not positively homoge-
neous, so it is not a coherent risk measure.
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Remark 4.16. Despite not being coherent, the entropic risk measure is useful in
contexts where the exponential utility function is appropriate, such as in certain
insurance and risk-sensitive control applications. It reflects the trade-off between
expected return and the variability of outcomes in a way that emphasizes the
exponential growth of risk with increasing losses.

Example 4.17 (Mean-Variance Risk Measure). The mean-variance risk measure
is given by:

ρMV(X) = −E[X] + λ

2 Var(X),

where λ > 0 is a risk aversion parameter. This risk measure penalizes the variance
of the financial position, reflecting the trade-off between expected return and risk.

Remark 4.18. Like the Sharpe Ratio, the mean-variance risk measure is cash-
invariant and convex but not monotone. It forms the basis of the Markowitz
portfolio optimization framework. While it does not satisfy all the properties
of a risk measure as per Definition 4.1, it is instrumental in understanding the
balance between expected returns and the variability of those returns.

4.3.1 Summary of Risk Measure Properties

The following table summarizes the key properties of the risk measures discussed:

Risk Measure Monotone Cash-Invariant Convex Coherent
Value-at-Risk: Yes Yes No No
Worst-Case Risk Measure: Yes Yes Yes Yes
Sharpe Ratio: No Yes Yes No
Conditional Value-at-Risk: Yes Yes Yes Yes
Entropic Risk Measure: Yes Yes Yes No
Mean-Variance Risk Measure: No Yes Yes No

4.4 Dual Representation of Convex Risk Measures ♣
An important aspect of convex risk measures is their dual representation in terms of
penalty functions and probability measures.

Theorem 4.19 (Dual Representation). Let ρ be a convex risk measure on X =
L∞(Ω,F ,P). Then, there exists a convex, lower semicontinuous function α : M1 →
[0,∞], where M1 is the set of all probability measures on (Ω,F) absolutely contin-
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uous with respect to P, such that

ρ(X) = sup
Q∈M1

(EQ[−X]− α(Q)) , ∀X ∈ X . (51)

Remark 4.20. The function α can be interpreted as a penalty term that quantifies
the deviation of the alternative measure Q from the reference measure P. The dual
representation expresses the risk measure as the worst-case expected loss over a set
of alternative probability measures, adjusted by the penalty.
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4.5 Risk Optimal Hedging
In Section 3, we discussed the variance-optimal hedge, which provides us with a hedging
strategy φ∗ = (W ∗

0 , ϕ
∗) that minimizes the mean-square hedging error

EP
[
(WT (φ)−H)2

]
= EP

[
(W0 +GT (ϕ)−H)2

]
,

over all self-financing strategies. This approach is applicable in any incomplete market
and, under additional but relatively mild conditions, we can construct such variance-
optimal strategies explicitly (see Theorem 3.8).
However, using the mean-square error as a measure of how acceptable or ’good’ a hedge
is has the drawback that it treats positive and negative deviations of WT (φ) from the
contingent claim H symmetrically. In reality, only the case H > WT (φ) is undesirable for
the seller of the contingent claim, as it implies a loss.

4.5.1 Risk Optimal Strategies and Indifference Prices

We present an alternative method for hedging a contingent claim within a potentially
incomplete financial market (Ω,F ,P, {Ft}Tt=0, X). This approach is predicated on the
viewpoint of the seller of the contingent claim, e.g., a bank. Suppose a bank’s client
requests a derivative contract with a payoff function H ∈ L0,+(FT ) and offers at time
t = 0 the price π to enter this contract. The bank has the discretion to accept or reject
this deal, depending on the proposed price π and the risk associated with the financial
position GT (ϕ)−H under some self-financing strategy ϕ.
Assuming that the bank evaluates its risk with a risk measure ρ : L0(FT ) → R, the
quantity ρ(GT (ϕ)−H) represents the capital that the bank must allocate to the position
GT (ϕ)−H to render it acceptable from a risk perspective when trading according to the
strategy ϕ.
By denoting the set of all self-financing trading strategies by H, we define the map
π : L0(FT )→ R as follows:

π(H) := inf
ϕ∈H

ρ(GT (ϕ) +H), H ∈ L0(FT ). (52)

That π is again a risk measure on L0(FT ) is established in the following proposition.

Proposition 4.21. The function π : L0(FT ) → R defined in (52) is monotonic and
cash-invariant. If H is convex and ρ is convex, then π is a convex risk measure.

Proof. We demonstrate the asserted properties of π.
Monotonicity: Let H1, H2 ∈ L0(FT ) such that H1 ≤ H2. For any admissible strategy
ϕ ∈ H, we have

GT (ϕ)−H1 ≥ GT (ϕ)−H2.

Since ρ is a risk measure and thus monotonic decreasing (recall that higher financial
positions have lower risk), it follows that

ρ(GT (ϕ)−H1) ≤ ρ(GT (ϕ)−H2).
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Taking the infimum over all ϕ ∈ H on both sides, we obtain

π(H1) ≤ π(H2),

which shows that π is monotonic.
Cash Invariance: Let m ∈ R and H ∈ L0(FT ). Then,

π(H +m) = inf
ϕ∈H

ρ(GT (ϕ)− (H +m))

= inf
ϕ∈H

ρ((GT (ϕ)−H)−m)

= inf
ϕ∈H

(ρ(GT (ϕ)−H)−m)

=
(

inf
ϕ∈H

ρ(GT (ϕ)−H)
)
−m

= π(H)−m,

where we used the cash invariance property of ρ, namely ρ(X −m) = ρ(X)−m.
Convexity: Assume that H is convex and that ρ is convex. For any H1, H2 ∈ L0(FT )
and λ ∈ [0, 1], we have

π(λH1 + (1− λ)H2) = inf
ϕ∈H

ρ (GT (ϕ)− (λH1 + (1− λ)H2))

= inf
ϕ∈H

ρ (λ(GT (ϕ)−H1) + (1− λ)(GT (ϕ)−H2)) .

Since ρ is convex, we have

ρ (λ(GT (ϕ)−H1) + (1− λ)(GT (ϕ)−H2)) ≤ λρ(GT (ϕ)−H1) + (1− λ)ρ(GT (ϕ)−H2).

Therefore,

π(λH1 + (1− λ)H2) ≤ inf
ϕ∈H

(λρ(GT (ϕ)−H1) + (1− λ)ρ(GT (ϕ)−H2)) .

Since H is convex, any ϕ ∈ H can be represented as ϕ = λϕ1 + (1 − λ)ϕ2 for some
ϕ1, ϕ2 ∈ H. However, the infimum over ϕ ∈ H of the sum above is less than or equal to
λπ(H1) + (1− λ)π(H2). Therefore,

π(λH1 + (1− λ)H2) ≤ λπ(H1) + (1− λ)π(H2),

showing that π is convex.

Following our interpretation, the risk π(H) in (52) can be seen as the minimal amount
of capital required to supplement the financial position GT (ϕ)−H to make it acceptable
from a risk perspective when we hedge optimally. A simple heuristic might suggest that
the bank should enter the trade whenever the client’s premium offer π is larger than the
risk associated with the financial position measured by π(H), i.e., whenever π(H) ≤ π,
and therefore abstain if π(H) > π. However, this overlooks an important option that the
bank retains: the option to not engage in the trade at all. In other words, the bank is not
obliged to assume a liability of −H at time T . To rectify this and determine the correct
threshold price, one must consider the difference between the risk of entering the trade
and the risk of not entering it, which is π(H)− π(0).
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Definition 4.22. We define the risk indifference price p(H) of the European
contingent claim H as

p(H) := π(H)− π(0), (53)

where π is given by (52).

The indifference price p(H) represents the additional amount of capital (over the baseline
risk π(0)) that the bank requires to accept the liability −H at time T . It is convenient that
the indifference price coincides with the ”fair price” if the contingent claim is attainable,
as shown in the next lemma.

Lemma 4.23. Suppose H is attainable, i.e., there exists a self-financing strategy
φ∗ = (π∗, ϕ∗) such that H = π∗ +GT (ϕ∗). Then p(H) = π∗; that is, the indifference
price coincides with the risk-neutral price from Theorem 2.6.

Proof. For any ϕ ∈ H, consider

GT (ϕ)−H = GT (ϕ)− (π∗ +GT (ϕ∗)) = −π∗ +GT (ϕ− ϕ∗).

Using the cash invariance property of ρ, we have

ρ(GT (ϕ)−H) = ρ(−π∗ +GT (ϕ− ϕ∗)) = ρ(GT (ϕ− ϕ∗))− π∗.

Taking the infimum over ϕ ∈ H (note that ϕ−ϕ∗ ∈ H if H is a vector space of strategies),
we get

π(H) = inf
ϕ∈H

ρ(GT (ϕ)−H) = inf
ϕ∈H

(ρ(GT (ϕ− ϕ∗))− π∗)

=
(

inf
ψ∈H

ρ(GT (ψ))
)
− π∗ = π(0)− π∗.

Rearranging, we find

p(H) = π(H)− π(0) = −π∗.

Since the indifference price is the amount the bank requires to accept the liability −H,
and the bank can replicate H by investing π∗ at time 0, it follows that p(H) = π∗.

Remark 4.24. The negative sign in the expression p(H) = −π∗ arises from our
convention that the bank receives p(H) when entering into the contract, and the
liability at time T is −H. Thus, the initial outlay is −p(H), matching the replication
cost π∗.

4.6 Overture on Deep Hedging
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5 Expected Utility

5.1 Lotteries
We assume that the set X is a convex subset of the set of all probability measures on some
measurable space (S,S). We write M instead of X . Our aim is to consider preference
relations on the space of lotteries that admit a numerical representation of a special kind.

Definition 5.1. Let ≻ be a preference relation onM. A numerical representation U
is called a Von Neumann-Morgenstern representation if there is a measurable
function u : S → R such that

U(µ) =
∫
u dµ, ∀µ ∈M. (54)

It is easy to check that a Von Neumann-Morgenstern representation U is an affine function,
i.e. U(tµ + (1 − t)ν) = tU(µ) + (1 − t)U(ν), for all µ, ν ∈ M and t ∈ [0, 1]. But, if a
numerical representation U of ≻ is affine, then it implies two additional properties of ≻
(see Proposition 3.3), that we define now.

Definition 5.2. Let ≻ be a preference relation onM. It satisfies the independence
axiom if for all µ ≻ ν it holds that

tµ+ (1− t)λ ≻ tν + (1− t)λ, (55)

for all λ ∈M and t ∈ (0, 1].
The preference relation satisfies the Archimedean axiom (also called continuity
axiom), if for all µ ≻ λ ≻ ν, there are t, s ∈ (0, 1) such that

tµ+ (1− t)ν ≻ λ ≻ sµ+ (1− s)ν. (56)

Proposition 5.3. Assume that ≻ admits an affine numerical representation. Then
≻ satisfies the axioms of Definition 5.2.

Proof. Left as an Exercise.

The nice thing is that Proposition 5.3 has a converse as well. This is the content of the
next theorem.

Theorem 5.4. Suppose that a preference relation ≻ on M satisfies both the inde-
pendence and Archimedean axioms. Then it has an affine numerical representation,
say U . Moreover, for any other affine numerical representation U , there exist a > 0
and b ∈ R such that U = aU + b.

Proof. We leave the proof out of this version.
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Example 5.5. Suppose thatM is the set of all finite mixtures of Dirac measures δx,
and that an affine representation U exists. Define u(x) = U(δx). Let

µ =
∑

tiδxi
,

where the ti ≥ 0 and ∑ ti = 1. Affinity of U yields

U(µ) =
∑

tiu(xi) =
∫
u dµ,

which is the desired representation. So, in this case, if there exists an affine repre-
sentation, it is automatically of Von Neumann-Morgenstern type.

In the remainder of this section we assume that the set S is a separable metric space and
that S is its Borel σ-algebra. Recall the definition of weak convergence of probability
measures on S: µn → µ iff

∫
f dµn →

∫
f dµ for all bounded and continuous functions f

on S. As a preparation for the final theorem, we have the following lemma.

Lemma 5.6. Consider the space M of all probability measures on (S,S) endowed
with the weak topology. Fix µ, ν ∈ M and consider A : t 7→ tµ + (1 − t)ν. Then
A : [0, 1]→M is continuous. If ≻ is a continuous preference ordering onM, then it
satisfies the Archimedean axiom.

Proof. The first assertion follows from the evident identity
∫
f d(tµ+(1−t)ν) = t

∫
f dµ+

(1−t)
∫
f dν, valid for any bounded and continuous function f on S. Indeed, if tn → t, one

then has for all bounded and continuous functions f on S that
∫
f dA(tn) →

∫
f dA(t),

which shows that A(t) is the weak limit of the A(tn).
To prove the second assertion, let µ ≻ ν and choose λ ∈ ((ν, µ)). Observe that t = 1 is
an element of A−1((λ,→)) and that this set is open in [0, 1] by the just shown continuity
of A. Hence there is also some t ∈ (0, 1) belonging to it, and for this t one has A(t) =
tµ+(1− t)ν ≻ λ, as required in Definition 5.2 The existence of s in that definition follows
similarly.

Theorem 5.7. Consider the spaceM of all probability measures on (S,S) endowed
with the weak topology, where S is assumed to be separable. Let ≻ be a continuous
preference ordering onM, satisfying the independence axiom. Then ≻ admits a Von
Neumann-Morgenstern representation

U(µ) =
∫
u dµ, (57)

where the function u : S → R is bounded, continuous and unique up to affine
transformations.

Proof. Consider first the subspaceMS of simple distributions on S, these are the distribu-
tions as in Example 5.5. We conclude from Lemma 5.6 and Theorem 5.4 that ≻ restricted
to MS admits an affine representation, which is, by Example 5.5, automatically of Von
Neumann-Morgenstern type.
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The function u involved will turn out to be bounded. Suppose that this is not the case,
then there is a sequence (xn) ⊂ S such that (u(xn)) is increasing and u(xn) > n (the other
possibility u(xn) < −n can be treated similarly). Put µn = (1−

√
1/n)δx1+

√
1/nδxn . Since

u(x2) > u(x1), we have δx2 ≻ δx1 , so δx1 ∈ ((←, δx2)). One easily checks that µn → δx1

weakly. Hence, for n big enough, µn belongs to any (nonempty) open neighborhood of
δx1 , so eventually we have µn ∈ ((←, δx2)). But then U(µn) ≤ u(x2). However, by direct
computation, we have U(µn) > (1−

√
1/n)u(x1) +

√
n, which yields a contradiction.

We now show that u is continuous. Suppose the contrary, then there is a sequence (xn)
converging to some x ∈ S, whereas u(xn) doesn’t converge to u(x). Assume e.g. that
one has lim supu(xn) < u(x). Then along a subsequence, again denoted by (xn), one has
lim u(xn) =: a < u(x). In particular, there is m ∈ N such that |u(xn)−a| < 1

3(u(x)−a), for
n ≥ m; equivalently 4

3a−
1
3u(x) < u(xn) < 2

3a+ 1
3u(x), for n ≥ m. Put µ = 1

2(δx + δxm).
Then also U(δx) = u(x) > 2

3u(x) + 1
3a > 1

2(u(x) + u(xm)) = U(µ) > 1
3u(x) + 2

3a >
U(δxn), for n ≥ m. So, δx ≻ µ ≻ δxn . This means that δxn doesn’t belong to the open
neighborhood ((µ,→)) of δx, contradicting the fact that δxn → δx weakly.
We now show that, knowing the function u, Equation (57) defines a numerical representa-
tion U of ≻. Since u is bounded and continuous, U , as defined in (57), is continuous w.r.t.
the weak topology. It is a fact that the set of simple distributions is weak-dense in the set
of all probability measures on (S,S). Since we know that U is a numerical representation
of ≻ on the set of simple distributions, we can argue as in the proof of Theorem B.10 ,
that U is also a numerical representation on the collection of all probability measures on
(S,S).
Finally, u is unique up to affine transformations. This follows from Theorem 5.4 , affine
numerical representations are unique up to affine transformations.

5.2 Risk Aversion
We now delve into the realm of utility and its expectation in the context of portfolio
theory. Consider a setM of probability measures on an interval S of R. Let S represent
the Borel σ-algebra on S. For our setup, M is assumed to be convex and contains all
Dirac measures on points in S, hence all simple measures as well.
Typically, the fair price of a lottery µ ∈M is its expectation, given by

m(µ) :=
∫
S
xµ(dx)

unless stated otherwise, these expectations are assumed to be finite for all µ ∈M.

Remark 5.8. Consider concave functions u : S → R satisfying the condition:

u(tx+ (1− t)y) ≥ tu(x) + (1− t)u(y)

for any x, y ∈ S and t ∈ [0, 1]. It’s worth noting the special properties of such concave
functions which will be crucial for our further discussions.
A function u : S → R exhibits strict concavity if:

u(tx+ (1− t)y) > tu(x) + (1− t)u(y)

for distinct x, y ∈ S and t between 0 and 1.
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Risk aversion is a key concept in portfolio theory. It’s observed that individuals often
prefer a guaranteed outcome over a lottery with the same expected payoff, due to personal
preferences.

Definition 5.9 (Monotone and Risk Averse Preference Order). A preference order
≻ on M is called

i) monotone, if x > y implies δx ≻ δy (with x, y ∈ S).

ii) risk averse, if δm(µ) ≻ µ, unless µ is degenerate, i.e., µ = δm(µ).

Proposition 5.10. If a preference order ≻ on M has a Von Neumann-Morgenstern
representation given by U(µ) =

∫
u dµ then:

i) the preference order is monotone if and only if u is strictly increasing.

ii) the preference order is risk averse if and only if u is strictly concave.

Proof. (i) Notice that U(δx) = u(x). Then u(x) > u(y) if and only if U(δx) > U(δy) if
and only if δx ≻ δy.

(ii) Suppose that ≻ is risk averse. Take x, y ∈ S and consider µ = tδx + (1 − t)δy for
t ∈ (0, 1). Then m(µ) = tx+(1−t)y. Then the risk averse ≻ yields U(δm(µ)) > U(µ),
or u(tx + (1 − t)y) > tu(x) + (1 − t)u(y). Hence u is strictly concave. Conversely,
for strictly concave u, Jensen’s inequality gives for any nondegenerate µ ∈ M that
U(δm(µ)) = u(m(µ)) >

∫
u dµ = U(µ).

Definition 5.11 (Utility Function). A function u : S → R is called a utility function
if it is strictly increasing, strictly concave, and continuous on S. A preference order
≻ on M is said to have an expected utility representation U if there exists a utility
function u such that

U(µ) =
∫
udµ, for all µ ∈M.

For any utility function u, a unique c(µ) ∈ S exists such that playing a lottery µ is
indifferent to receiving a certain amount c(µ) under a given preference order.

Definition 5.12 (Certainty Equivalent and Risk Premium). For a given lottery µ,
the number c(µ) is its certainty equivalent and the difference ρ(µ) := m(µ)− c(µ)
is termed the risk premium.

Notice that always c(µ) ≤ m(µ) for risk averse ≻ and that strict inequality holds for
nondegenerate µ. Hence, a risk averse person with utility function u will not pay more
than c(µ) to play a lottery µ. Conversely, the risk premium is the amount of money a
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seller of the lottery µ has to pay to a risk averse agent to convince him to exchange the
sure amount m(µ) for the random pay-off of the lottery µ.
In the present context, we consider the following optimization problem. Find, if it exists,
a lottery µ∗ that is most preferred among all lotteries in a subset ofM, equivalently, the
one with the highest value of U , where U is of expected utility type.
We specialize to a specific case. Let (Ω,F ,P) be given and a random variable X defined
on it, with values in S, that has a nondegenerate distribution µ. Let c ∈ R and consider
the convex combination Xλ = λc + (1 − λ)X. Note that the distribution function of Xλ

is obtained by a location-scale transformation of that of X. Write µλ for the distribution
of Xλ (µ0 = µ). Put

f(λ) := U(µλ) =
∫
u dµλ = E [u(Xλ)] .

Proposition 5.13. Assume that S is an interval, X ≥ a for some a ∈ IntS, EP [X] <
∞ and c ∈ IntS.

i) The function f : [0, 1] → R is strictly concave and hence its maximal value is
assumed for some unique λ∗ ∈ [0, 1].

ii) We have λ∗ = 1 if m(µ) = EP [X] ≤ c, and λ∗ > 0 if c ≥ c(µ).

iii) If moreover u is differentiable, then we even have λ∗ = 1 ⇔ EP [X] ≤ c and
λ∗ = 0⇔ c ≤ EP[u′(X)]

EP[u(X)] .

Proof. (i) Since f(λ) = E [u(Xλ)], strict concavity of f follows from exploiting first strict
concavity of u and then taking expectations.
(ii) Jensen’s inequality yields

f(λ) ≤ u (E [Xλ]) = u (E [X] + λ(c− E [X])) ,

with equality iff λ = 1. Since u is increasing, the right hand side is non-decreasing in λ if
c ≥ E [X]. Under this condition, λ∗ = 1.
Concavity of u yields u(Xλ) ≥ (1− λ)u(X) + λu(c), hence

f(λ) ≥ (1− λ)u(c(µ)) + λu(c),

with equality iff λ = 0, 1. The right hand side is non-decreasing in λ under the condition
c ≥ c(µ), in which case λ∗ > 0.
(iii) Assume that u is differentiable. Because f is concave, λ∗ = 0 can only happen if f
is decreasing in a neighborhood of zero, so when the right derivative f ′

+(0) ≤ 0. Let us
compute this derivative. We have

u(Xλ)− u(X)
λ

= u(Xλ)− u(X)
Xλ −X

(c−X).

The nonnegative difference quotient on the right, is bounded from above by the derivative
of u in the left endpoint of the involved interval. Observe that for all λ ∈ [0, 1] one has
Xλ = λc+(1−λ)X ≥ λc+(1−λ)a ≥ min{a, c}. Hence the absolute value is bounded by
|u′(c ∧ a)(c−X)|, which has finite expectation, since |u′(c ∧ a)| <∞ because c, a ∈ IntS
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and E [|X|] < ∞. Taking expectations and letting λ ↓ 0, we get by the Dominated
Convergence Theorem that the limit is f ′

+(0) = E [u′(X)(c−X)]. Hence f ′
+(0) ≤ 0 iff

c ≤ E[u′(X)]
E[u(X)] .

In much the same way, λ∗ = 1 iff f is non-decreasing in a neighborhood of λ = 1,
f ′

−(1) ≥ 0. Working with a difference quotient for λ ↑ 1 and using that X1 = c, we get
f ′

−(1) = u′(c)(c− E [X]). The last assertion now also follows.

Example 5.14. Consider a risky asset S1 with price π1, and a riskless asset with
interest rate r (S0 = 1 + r). Suppose that an agent has a C1 utility function u and a
capital (initial wealth) w. Suppose that he builds a portfolio by investing a fraction
λ of his capital in the riskless asset and the rest in the risky asset. The value of the
portfolio (“at time t = 1”) is then λw(1 + r) + (1 − λ)wS1

π1
, and the discounted net

gain is
wS1(1− λ)
π1(1 + r) − π1.

The previous proposition shows that λ∗ = 1 (all capital invested in the riskless asset)
iff E[S1]

1+r ≤ π1. Hence such an agent is only willing to invest in the risky asset, when
the price is below the expected discounted value. Note that this holds for any risk
averse investor, regardless of the special form of the utility function u. Compare this
with what happens under the risk-neutral measure.

5.2.1 Arrow-Pratt coefficient

Suppose that one considers a probability measure µ that has finite variance and that
is concentrated on a small interval around its mean m = m(µ). Let u be a C2 utility
function on a neighborhood of this interval and let U be the associated expected utility
representation. Look at the following heuristic.
A first order Taylor expansion of u around m gives

u(x) ≈ u(m) + (x−m)u′(m).

With x = c(µ) one obtains u(c(µ)) ≈ u(m) + (c(µ)−m)u′(m).
A second order Taylor expansion of u around m gives

u(x) ≈ u(m) + (x−m)u′(m) + 1
2(x−m)2u′′(m).

Taking expectations yields

u(c(µ)) = U(µ) =
∫
udµ ≈ u(m) + 1

2Var(µ)u′′(m).

Hence, combining the two approximations, for the risk premium ρ(µ) = m− c(µ) we have
the approximation

ρ(µ) ≈ −1
2
u′′(m)
u′(m) Var(µ).

We shall see that, in spite of the rough heuristics, the right hand side of this equation
contains a useful quantity.
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Definition 5.15. For u, a twice differentiable utility function on some (open) interval
S, the quantity

α(x) := −u
′′(x)
u′(x)

is called the Arrow-Pratt coefficient of absolute risk aversion of u at the level x.

Given that u is strictly concave and strictly increasing, it follows that α(x) ≥ 0 for all
x. Additionally, based on the preceding discussion, for probability measures µ that are
tightly clustered around their mean m, the risk premium ρ(µ) can be approximated as
the product of the Arrow-Pratt coefficient of absolute risk aversion at m and half the
variance of µ. This factorization highlights that the risk premium depends on both the
level of risk aversion at the mean and the variability of the outcomes, with the variance
being an intrinsic property of µ that is independent of location.
The Arrow-Pratt coefficients possess the desirable property of remaining unchanged under
affine transformations. In the context of Von Neumann-Morgenstern utility representa-
tions, where the utility function u is determined uniquely up to such transformations, the
Arrow-Pratt coefficient emerges as an inherent characteristic of the preference ordering,
rather than a particular numerical representation. This assertion holds provided that u is
twice differentiable (i.e., u ∈ C2) and non-constant; a constant u would imply a degenerate
preference order devoid of any interesting structure.
We now proceed to introduce some commonly employed utility functions.

Example 5.16. Let u be such that the Arrow-Pratt function α(·) is a (positive)
constant, also denoted by α. Then, by solving a second order linear differential
equation, one finds, for some constants a ∈ R and b > 0,

ua,b(x) = a− be−αx,

which is an affine transformation of u(x) = 1− exp(−αx). Note that u is defined on
all of R. The functions ua,b are called CARA functions (from Constant Absolute
Risk Aversion).

Example 5.17. Here we introduce the HARA (from Hyperbolic Absolute Risk
Aversion) utility functions. For these functions we have that α(x) = c

x
for x > 0.

For convenience we write c = 1 − γ, and hence γ < 1. Solving the corresponding
differential equation for u yields

ua,b(x) = aγ

γx+ b
.

for γ ̸= 0 and ua, b(x) = a log x+b for γ = 0. Note that γ ≥ 1 is excluded by requiring
that u is strictly concave and that for all γ < 1 it holds that u′

a,b(x) = axγ−1. The
functions ua, b are affine transformations of u1,0.

HARA utility functions with γ > 0 are examples of utility functions u : [0,∞)→ R satisfy-
ing the Inada conditions, i.e. u ∈ C1(0,∞), with limx→0 u

′(x) =∞ and limx→∞ u′(x) = 0.
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There are close connections between utility functions, risk premia and Arrow-Pratt coef-
ficients for different preference orders.

Proposition 5.18. Suppose u1, u2 : S → R are two C2 utility functions, with cor-
responding risk premia ρ1(·), ρ2(·), certainty equivalents c1(·), c2(·) and Arrow-Pratt
coefficients α1(·) and α2(·). The following are equivalent:

i) α1(x) ≥ α2(x),∀x ∈ S.

ii) There exist a strictly increasing concave function F , defined on the range of
u2, such that u1 = F ◦ u2.

iii) ρ1(µ) ≥ ρ2(µ),∀µ ∈M.

Proof. i)⇒ (ii): The obvious choice of F is F (x) = u1(u−1
2 (x)). Clearly, F is well defined,

since u2 is strictly increasing, and since u−1
2 and u1 are strictly increasing, so is F . To

show that F is concave, we compute its second derivative and use that (i) is assumed.
Notice that it is sufficient to show that F ′′(u2(x)) ≤ 0, for all x ∈ S. We start with
u1(x) = F (u2(x)) and get

u′
1(x) = F ′(u2(x))u′

2(x)
u′′

1(x) = F ′′(u2(x))u′
2(x)2 + F ′(u2(x))u′′

2(x).

Solving the second of these two equations for F ′′(u2(x)) and using the first one yields

F ′′(u2(x)) = u′′
1(x)− u′

1(x)u′′
2(x)/u′

2(x)
u′

2(x)2

= u′′
1(x)/u′

1(x)− u′′
2(x)/u′

2(x)
u′

2(x)2

= u′
2(x) (α2(x)− α1(x)) ,

by definition of the Arrow-Pratt coefficients. By assumption (i) and the fact that u1 is
increasing, we have F ′′(u2(x)) ≤ 0.
(ii)⇒ (iii): By Jensen’s inequality, applied to the concave function F , it holds that

u1(c1(µ)) =
∫
u1 dµ

=
∫
F ◦ u2 dµ ≤

∫
F (u2 dµ)

= F (u2(c2(µ))) = u1(c2(µ)).

Since u1 is increasing, we must have c1(µ) ≤ c2(µ), from which the result follows, since
ρ1(µ) = m(µ)− c1(µ) and ρ2(µ) = m(µ)− c2(µ).
(iii)⇒ (i): Suppose that (i) doesn’t hold. Then for some x one has α1(x) < α2(x), and
by continuity of α1 and α2, this equality extends to an open neighborhood O of x. By
(4.3), which is also valid without assumptions (i) or (ii), we then have F ′′(u2(x)) > 0 on
O. Take now a nondegenerate probability measure µ such that µ(O) = 1. Then strict
convexity of F ◦u2 leads to a strict equality in the opposite direction as compared to (4.4),
u1(c1(µ)) > u1(c2(µ)), from which it follows that c1(µ) > c2(µ),contradicting assumption
(iii).
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5.3 Utility-based shortfall risk
Suppose that a risk-averse investor assesses the downside risk of a financial positionX ∈ X
by taking the expected utility E [u(−X−)] derived from the shortfall X−, or by considering
the expected utility E [u(X)] of the position itself. If the focus is on the downside risk, then
it is natural to change the sign and to replace u by the function l(x) := −u(−x). Then
l is a strictly convex and increasing function, and the maximization of expected utility
is equivalent to minimizing the expected loss E [l(−X)] or the shortfall risk E [l(X−)].
In order to unify the discussion of both cases, we do not insist on strict convexity. In
particular, l may vanish on (−∞, 0], and in this case the shortfall risk takes the form
E [l(X−)] = E [l(−X)].

Definition 5.19. A function l : R→ R is called a loss function if it is increasing and
not identically constant.

Lemma 5.20. Let ℓ : R → R be continuous, non-decreasing and convex function (a
so called loss function), then the following function defines a convex risk measure:

ρ(X) := inf
w∈R
{w + E [ℓ(−X − w)]} , X ∈ X , (58)

Proof. Let X, Y ∈ X be such that X ≤ Y . Since ℓ is a non-decreasing function, we have
E [ℓ(−X − w)] ≥ E [ℓ(−Y − w)] for any w ∈ R and thus ρ(X) ≥ ρ(Y ). Let m ∈ R, then

ρ(X +m) = inf
w∈R

((w +m)−m+ E [ℓ(−X − (w +m))]) = −m+ ρ(X).

Now, let λ ∈ [0, 1], then the convexity of ℓ implies

ρ(λX + (1− λ)Y ) = inf
w∈R

(w + E [ℓ(−λX − (1− λ)Y − w)])

= inf
v,w∈R

(λw + (1− λ)v + E [ℓ(λ(−X − w) + (1− λ)(−Y − v))]

≤ inf
w∈R

inf
v∈R

(
λ(v + E [ℓ(−X − v)]) + (1− λ)(w + E [ℓ(−Y − w)]))

)
= λρ(X) + (1− λ)ρ(Y ).

Example 5.21 (Utility-based shortfall risk measures). Consider a utility function u
on R, a probability measure Q ∈ M1, and fix some threshold c ∈ R. Let us call
a position X acceptable if its certainty equivalent is at least c, i.e., if its expected
utility EQ [u(X)] is bounded from below by u(c). Clearly, the set

A := {X ∈ X | EQ [u(X)] ≥ u(c)}.

is nonempty, convex, and satisfies (ii) and (iii) from Proposition 4.5. Thus, ρA is a
convex risk measure, called utility-based shortfall risk measure.
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Example 5.22 (Entropic risk measure). Let u : R → R be a strictly increasing and
continuous function. For X ∈ X = L0(Ω,F ,P) we consider the certainty equivalent
of the law of X under P given by c(X) = u−1(E [u(X)]) for X ∈ X . Then we set
ρ(X) = −X which is a monotone decreasing function that is cash invariant if and
only if u is either linear or of the form u(x) = a ± b exp(±αX) for some constant
a, b, α ∈ R. Therefore, ρ defined as ρ(X) = −E [X] or ρ(X) = ± 1

α
logE [exp(±αX)]

give rise to a convex risk measure, called the entropic risk measure.

The following lemma sheds light on the connection between utility indifference pricing
and risk indifference pricing in the case of exponential utility functions.

Lemma 5.23. Let u be an exponential utility function of the form

u(x) = −1
λ
e−λx, λ > 0.

Define πu(H) ∈ R as the solution to the utility indifference pricing equation:

sup
ϕ∈H

E
[
u(GT (ϕ)−H + πu(H))

]
= sup

ϕ∈H
E
[
u(GT (ϕ))

]
. (59)

Then it follows that

πu(H) = ρent(GT (ϕ∗)−H)− ρent(GT (ϕ∗)),

where ρent is the entropic risk measure defined by

ρent(X) = 1
λ

ln
(
E[e−λX ]

)
.

In particular, the utility indifference price πu(H) coincides with the risk indifference
price p(H) with respect to the entropic risk measure.

Proof. Starting from the exponential utility function, note that for any ϕ ∈ H:

E[u(GT (ϕ)−H + πu(H))] = E
[
−1
λ
e−λ(GT (ϕ)−H+πu(H))

]

= −1
λ
e−λπu(H)E

[
e−λ(GT (ϕ)−H)

]
.

Similarly,

E[u(GT (ϕ))] = E
[
−1
λ
e−λGT (ϕ)

]
= −1

λ
E
[
e−λGT (ϕ)

]
.

By the definition of πu(H) in (63), we have

sup
ϕ∈H

E[u(GT (ϕ)−H + πu(H))] = sup
ϕ∈H

E[u(GT (ϕ))].

Substitute the exponential forms:

sup
ϕ∈H

(
− 1
λ
e−λπu(H)E[e−λ(GT (ϕ)−H)]

)
= sup

ϕ∈H

(
− 1
λ
E[e−λGT (ϕ)]

)
.
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Multiplying by −λ and simplifying,

e−λπu(H) sup
ϕ∈H

E[e−λ(GT (ϕ)−H)] = sup
ϕ∈H

E[e−λGT (ϕ)].

Taking logarithms on both sides,

−λπu(H) + ln
(

sup
ϕ∈H

E[e−λ(GT (ϕ)−H)]
)

= ln
(

sup
ϕ∈H

E[e−λGT (ϕ)]
)
.

Rearrange terms:

πu(H) = 1
λ

(
ln
(

sup
ϕ∈H

E[e−λ(GT (ϕ)−H)]
)
− ln

(
sup
ϕ∈H

E[e−λGT (ϕ)]
))

.

Now, define ρent(X) = 1
λ

ln(E[e−λX ]). The term ln(supϕ E[e−λ(GT (ϕ)−H)]) represents the
optimal entropic evaluation of GT (ϕ) −H over all strategies ϕ. By identifying the opti-
mizing strategy ϕ∗, we have:

ρent(GT (ϕ∗)−H) = 1
λ

ln
(
E[e−λ(GT (ϕ∗)−H)]

)
,

and similarly for GT (ϕ∗):

ρent(GT (ϕ∗)) = 1
λ

ln
(
E[e−λGT (ϕ∗)]

)
.

Thus,

πu(H) = ρent(GT (ϕ∗)−H)− ρent(GT (ϕ∗)).

By definition, the risk indifference price p(H) with respect to the entropic risk measure also
compares the entropic evaluations with and without H. Hence, πu(H) = p(H), showing
that the utility indifference price under exponential utility equals the risk indifference
price associated with the entropic risk measure.

5.4 Stochastic dominance ♣
Results in the previous sections were depending on the preference orders, or the utility
functions, at hand. In the present section, we will look at preferences that are independent
of a particular choice of a utility function belonging to a certain class. The standing
assumptions are that we deal with the set M of all probability measures on (R,B) that
admit a finite expectation. As a consequence, for any utility function u : R → R, the
integrals

∫
u dµ are well defined, but may take on the value −∞. This holds, since every

concave function has an affine function as a majorant. Indeed, since for some a, b > 0,
one has u(x) ≤ ax+ b for all x, it holds that u(x)+ ≤ a|x|+ b and hence

∫
u+ dµ <∞.
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5.4.1 Uniform order

Definition 5.24. Let µ, ν ∈ M. One says that µ is uniformly preferred over ν,
denoted by µ ⪰uni ν, if∫

u dµ ≥
∫
u dν, for all utility functions u : R→ R.

Remark 5.25. The uniform preference of the above definition is also called second
order stochastic dominance. Notice that it is not a weak preference order (see Defini-
tion 2.2), since it is not complete. In Section 5.2 we will discuss first order stochastic
dominance.

The next theorem gives a number of characterizations of uniform preference, there are
many more. The functions f below are defined on all of R.

Theorem 5.26. There is equivalence between the following statements.

i) µ ⪰uni ν.

ii) For all increasing concave functions f : R→ R, one has
∫
f dµ ≥

∫
f dν.

iii) For all c ∈ R, it holds that
∫
(c− x)+µ(dx) ≤

∫
(c− x)+ν(dx).

iv) If Fµ and Fν are the distribution functions of µ and ν respectively, then∫ c
−∞ Fµ(x) dx ≤

∫ c
−∞ Fν(x) dx, for all c ∈ R.

Proof. The direction i) ⇔ ii) is obvious. Let us turn to ii) ⇒ i). For the converse
implication we need a utility function that has finite integral under µ and ν. This can be
accomplished as follows. Take a given utility function u and an arbitrary x0 ∈ R. Modify
u on (−∞, x0] by replacing u with x 7→ u′

+(x0)(2(x − x0) − exp(x − x0) + 1) + u(x0).
Check that the modified function is still a utility function! Moreover, the modified utility
function (denoted u again) has finite integral w.r.t. any probability measure with finite
expectation. If f is increasing and concave, then uα(x) := αf(x) + (1 − α)u(x) defines
a strictly increasing, strictly concave continuous function, so a utility function, for every
α ∈ [0, 1). Note that the integral

∫
uα dµ is now always well defined, possibly taking the

value −∞. The assertion follows from∫
f dµ = lim

α→1

∫
uα dµ ≥ lim

α→1

∫
uα dν =

∫
f dν.

ii)⇔ iii): Clearly ii)⇒ iii). The converse implication basically follows from the fact that
every nonnegative convex decreasing function, with limit zero at infinity, is a pointwise
limit of positive linear combinations of functions x 7→ (c− x)+ and that −f is decreasing
and convex. More formally, we have that h = −f admits right derivatives h′

+(x) at every
point x. The function h′ is increasing, right continuous and on any interval (a, b], up to
scaling, it is a distribution function of a probability measure. Stated otherwise, there is
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a measure γ on (R,B) such that γ(a, b] = h′
+(b)− h′

+(a), for all a < b. Since there exists
only countably many discontinuity points of h′, we have for x < b

h(x) = h(b)−
∫

(x,b]
h′(y) dy = h(b)−

∫
(x,b]

(h′
+(y)− h′

+(b)) dy − h′
+(b)(b− x). (60)

We first rewrite the integral in (60). Let B = {(u, y) : x < y < u ≤ b}, we have:∫
(x,b]

∫ (
h′

+(y)− h′
+(b)

)
dy

= −
∫

(x,b]

∫
γ(y, b] dy∫

(x,b]
−
∫

1(y,b] dγ dy

=
∫
−
∫

1B(u, y)γ(du) dy

=
∫
−
∫

1B(u, y) dyγ(du) (by Fubini)

=
∫
−1(x,b](u)(u− x)γ(du)

=
∫
−1(−∞,b](u− x)+γ(du).

Hence, going back to (60), we can rewrite h(x) as

h(x) = h(b)− h′
+(b)(b− x) +

∫
1(−∞,b](u− x)+γ(du).

Let µ be a probability measure on (R,B). Integration of the last expression w.r.t. µ and
using Fubini’s theorem again, yields

∫
(−∞,b]

∫
h dµ = h(b)µ(−∞, b]− h′

+(b)
∫

(b− x)+µ(dx)

+
∫

(−∞,b]

∫
(u− x)+µ(dx)γ(du)

= h(b)µ(−∞, b]− h′
+(b)

∫
(b− x)+µ(dx)

+
∫

(−∞,b]

∫
(u− x)+µ(dx)γ(du).

Using condition iii) and the fact that h′
+ ≤ 0, we have an upper bound for the last

displayed expression by replacing µ with ν. It follows that∫
(−∞,b]

∫
hdµ ≤

∫
(−∞,b]

∫
hdν + h(b)(µ(−∞, b]− ν(−∞, b]).

Since h is lower bounded by an affine function, we have that
∫

(b,∞) hdµ and
∫

(b,∞) hdν are
both finite. Hence we obtain
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∫
(b,∞)

∫
hdµ ≤

∫
(b,∞)

∫
hdν

+
∫

(b,∞)

∫
hdµ−

∫
(b,∞)

∫
hdν

+ h(b)(µ(−∞, b]− ν(−∞, b])

=
∫

(b,∞)

∫
hdν −

∫
(b,∞)

(h(b)− h(x))µ(dx)

+
∫

(b,∞)
(h(b)− h(x))ν(dx).

We finally show that the last two integrals vanish for b→∞. Since they are similar, we
treat only the first of the two. Fix b0 and let b > b0. It holds that

0 ≤ h(b)− h(x) ≤ −h′
+(b0)(x− b0) for x > b.

Hence ∫
(b,∞)

(h(b)− h(x))µ(dx) ≤ −h′
+(b0)

∫
(x− b0)1(b,∞)(x)dµ,

which tends to zero by the Dominated convergence theorem, since
∫
|x|µ(dx) is finite.

Hence we obtain
∫
hdµ ≤

∫
hdν, which is equivalent to ii). iii) ⇔ iv): This is just a

matter of rewriting, using Fubini’s theorem. One has∫ c

−∞
Fµ(y)dy =

∫ c

−∞

∫
1(−∞,y](x)µ(dx)dy

=
∫

(−∞,c]

∫
dyµ(dx)

=
∫

(−∞,c]
(c− x)µ(dx) =

∫
(c− x)+µ(dx). (61)

The integral with Fν can be rewritten in similar terms and the equivalence of iii) and iv)
becomes obvious.

Remark 5.27. It follows from Theorem 5.26 ii), that µ ⪰uni ν implies m(µ) ≥ m(ν).
The integrals w.r.t. the measure µ in assertion iii) of the same theorem in fact
determine µ. Indeed, by the computations leading to (61), we see that knowing
integrals of (c − x)+ for all c is equivalent to knowing the integrals of Fµ up to c.
Taking right derivatives w.r.t. c gives Fµ(c) and knowing this for all c determines µ.
This fact can be used to show that ⪰uni defines a partial order (left as an exercise).

If µ is the distribution of a random variable X ∈ L1(Ω, F, P ) and ν that of Y ∈
L1(Ω, F, P ), such that µ ⪰uni ν ⪰uni µ, then µ = ν, so X and Y have the same dis-
tribution (under P ). Yet, X and Y are in general very different as random variables. It
may happen that P (X = Y ) = 0.
When two lotteries with the same mean are compared, we can develop the assertions of
Theorem 5.3 a little further.
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Proposition 5.28. For all probability measures µ, ν ∈ M the following are equiva-
lent.

i) µ ⪰uni ν and m(µ) = m(ν).

ii)
∫
fdµ ≥

∫
fdν, for all concave functions f .

iii) m(µ) ≥ m(ν) and
∫
(x− c)+µ(dx) ≤

∫
(x− c)+ν(dx), for all c ∈ R.

Proof. i) ⇒ ii): First we show that the assertion holds true for decreasing concave func-
tions. Such a function is x 7→ −(c − x)−, for arbitrary c ∈ R. Since −(c − x)− =
c − x − (c − x)+, the assertion for such a function follows from Theorem 5.26 and the
assumptions that m(µ) = m(ν) and µ ⪰uni ν, because x 7→ −(c − x)+ is concave and
increasing. The proof for arbitrary decreasing concave functions is then similar to the
proof of iii) ⇒ ii) of Theorem 5.26. The second assertion of Theorem 5.26 also tells us
that ii) is true for increasing concave functions, and hence ii) holds for monotone concave
functions. If f is concave, but not monotone, then there exists a x0 ∈ R, such that

f(x) ≤ f(x0), for all x ∈ R.

Let

f1(x) =
f(x) if x ≤ x0

f(x0) if x > x0

and

f2(x) =
f(x0) if x ≤ x0

f(x) if x > x0
.

Then f1 is concave and increasing and f2 is concave and decreasing. Knowing that the
assertions hold true for f1 and f2, we obtain the same result for f , because f(x) =
f1(x) + f2(x) − f(x0) and integration of the constant is the same for each probability
measure.
ii) ⇒ iii): Take first f(x) ≡ x to get the first assertion, and then f(x) ≡ −(x − c)+,
which is concave, to get the second one from ii).
iii)⇒ i): Rewrite the inequality between the integrals in iii) as∫

(c,∞)
xµ(dx)− c+ cµ(−∞, c] ≤

∫
(c,∞)

xν(dx)− c+ cν(−∞, c].

Let c → −∞ and use that both measures have a finite first moment to conclude that
cµ(−∞, c] and cν(−∞, c] tend to zero as well as

∫
(c,∞) xµ(dx)→

∫
xµ(dx) and

∫
(c,∞) xν(dx)→∫

xν(dx). One then arrives at
∫

(c,∞) xµ(dx) ≤
∫
xν(dx), or m(µ) ≤ m(ν). Together

with the assumption, this gives m(µ) = m(ν). To prove µ ⪰uni ν we use the identity
y+ = y + (−y)+ (for y ∈ R) to get∫

(c− x)+µ(dx) = c−m(µ) + (x− c)+µ(dx).

A similar equality holds for ν. Using the assumption and the just proved identity m(µ) =
m(ν), we arrive at

∫
(c − x)+µ(dx) ≤

∫
(c − x)+ν(dx), condition iii) in Theorem 5.26 to

get µ ⪰uni ν.
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5.4.2 Monotone order

We turn to another concept of stochastic dominance, also called first order stochastic
dominance. There are more of these concepts conceivable.

Definition 5.29. Let µ, ν be two probability measures on (R,B). One says that
µ stochastically dominates ν, if for all bounded increasing continuous functions f :
R→ R it holds that ∫

f dµ ≥
∫
f dν (5.3)

In this case one writes µ ⪰mon ν.

It is almost trivial to check that ⪰mon defines a partial order on the space of probability
distributions on (R,B). Below we give an easy characterization of µ ⪰mon ν.

Proposition 5.30. Let µ, ν be two probability measures on (R,B) and let Fµ and
Fν be their distribution functions. The following are equivalent:

i) It holds that µ ⪰mon ν.

ii) For all x ∈ R one has Fµ(x) ≤ Fν(x).

Proof. i) ⇒ ii): We’d like to apply the definition of stochastic dominance to the function
u 7→ 1(x,∞)(u), which is bounded and increasing. The result would then follow. However,
this function is not continuous. Therefore, one first uses the functions u 7→ (min{n(u −
x), 1})+ and let n→∞.
ii) ⇒ i): Let f be continuous, bounded, and increasing. We can obtain f (which is
measurable) as the pointwise limit of an increasing sequence of simple functions fn, that
are increasing themselves. To see this, we assume for simplicity that 0 ≤ f ≤ 1 and we
follow the usual approximation scheme, known from measure theory.
Let n ∈ N and define Eni = {(i− 1)2−n < f ≤ i2−n} for i = 1, . . . , 2n. Put

fn = 2−n
2n∑
i=1

(i− 1)1Eni
.

Then we know that fn ≤ f and fn ↑ f . Using that, for each n, the Eni with i = 0, . . . , 2n
are disjoint, Si≥j+1Eni = {f > j2−n} and {f > 1} = ∅, we rewrite

fn = 2−n
2n∑
i=1

i−1∑
j=1

1
 1Eni

= 2−n
2n−1∑
j=1

2n∑
i=j+1

1Eni
= 2−n

2n∑
j=1

1{f>j2−n}.

Since f is continuous, the sets {f > j2−n} are open and since f is increasing, there are
real numbers anj such that {f > j2−n} = (anj,∞). Hence,

∫
fn dµ = 2−n

2n∑
j=1

µ((anj,∞)) = 2−n
2n∑
j=1

(1− Fµ(anj)).

It follows from the assumption that
∫
fn dµ ≥

∫
fn dν. The assertion follows by application

of the Monotone Convergence Theorem.
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Portfolio Optimization



Preface to Part III: In this last part of the course “Portfolio Theory”, we delve into
portfolio optimization in an incomplete market setting, employing the concepts of ex-
pected utility and risk measures that we introduced in Part II. Indeed, we set-up portfolio
optimization problems using expected utility or risk as preference criteria and optimize
over trading strategies the expected utility or risk of a hedged financial position, terminal
wealth, consumption or terminal wealth and consumption.
We differentiate between static and dynamic portfolio optimization:

i) Static portfolio optimization involves a one-time trading strategy, typically at the
outset. Here, a portfolio is constructed either to hedge a contingent claim or as a
“classical investment”, where in both cases the agent wants to optimize the expected
utility or risk from its terminal financial position without adjusting the portfolio
holdings dynamically in time. This form of optimization constitutes a simpler prob-
lem than its dynamic counterpart and if one would incorporate trading cost in our
consideration, a static trading strategy is cheaper to set up compared to a dynamic
trading strategy. However the overall performance, in particular for hedging, might
be much worse, as no adjustments to new trading information is possible.

ii) Dynamic portfolio optimization entails a trading strategy that evolves over time, as
described in Part I. It allows for trading at multiple points t0, t1, . . . , tn, with each
subsequent portfolio decision potentially influenced by previous choices. Finding an
optimal trading strategy leads to a much more intricate and challenging problem
than the static approach. However, the option to adjust the portfolio and react to
market and trading events dynamically is very desirable for the agent. In Section 8
we show how dynamic programming and the martingale method can help to decom-
pose the dynamic portfolio optimization into simpler, static optimization or hedging
problems.

Note that both the static and dynamic optimization problems often lack closed-form
solutions. Nonetheless, under certain conditions, such as specific asset price models and
assumptions, and with particular criteria (like CRRA or CARA expected utility), insights
into optimal strategies are attainable as we will see in Section 7.2 and Section 7.3 below.
The setting is as follows: Let (Ω,F ,P,F, X) denote a finite discrete-time financial market
with (d+1) ∈ N-tradable assets. Assume that the market is free of arbitrage, but possibly
incomplete. Let u : R → R be a utility function, recall that u is increasing and concave.
In this section, we usually think of the following examples:

• CARA (Constant Absolute Risk Aversion) utility functions ua,b of the form

ua,b(x) = a− be−αx, a ∈ R, b > 0, α > 0.

• CRRA (Constant Relative Risk Aversion) utility functions uλ of the form

uλ(x) :=

x1−λ

1−λ , x > 0,
−∞, x ≤ 0,

and if λ = 1, set u1(x) :=
ln(x), x > 0
−∞, x ≤ 0.

Suppose an investor with initial capital W0 expresses her monetary preference for terminal
wealth in terms of expected utility. Then she naturally wants to maximize:

EP [u(WT (φ))] = EP [u(W0 +GT (ϕ))] , (62)

over all self-financing strategies φ such that the budget constraint W0(φ) ≤ W0 is satisfied.
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Definition 5.31. We call a self-financing strategy φ∗ = (W ∗
0 , ϕ

∗) a utility optimal
strategy with respect to utility function u and capital constraintW ∗

0 , if φ∗ maximizes
the expected utility of the terminal wealth over all other self-financing strategies
φ = (W0, ϕ) with W0 ≤ W ∗

0 , i.e.

EP [u(W ∗
0 +GT (φ))] ≤ EP [u(W ∗

0 +GT (φ∗))]

for all predictable Rd-valued processes ϕ.

Let us consider as second agent a bank, which is interested in selling a contingent claim
H ∈ L0,+(FT ). Since the market is incomplete, there might be an entire interval Π(H) of
arbitrage-free prices for the claim H. Assume that also the bank’s preference is given by
the expectec utility of some function u, then the bank faces the two options:

i) Selling the contigent claim for some price π0 and trading according to a strategy
φ = (π0, ϕ) that maximizes (62) for W0 = π0,

ii) or not selling the claim H and trade according to a strategy with initial capital 0,
that maximizes (62) with W0 = 0.

Definition 5.32. We call the price π∗
u ∈ R+ the utility indifferent price of the

European contingent claim H, if it satisfies:

sup
ϕ

EP [u(π∗
u +GT (ϕ)−H)] = sup

ϕ
EP [u(GT (ϕ))] , (63)

and the suprema on both sides are attained. In the following, we denote by φ∗
H =

(π∗
H , ϕ

∗
H) and φ∗ = (0, ϕ∗) the optimal strategies of the left- and right-hand side

of (63), respectively. We refer to ϕ := ϕ∗
H − ϕ∗ as the utility-based hedging

strategy.

Remark 5.33. Following equation (63), the utility indifferent price represents ex-
actly the threshold price at which the bank exhibits no preference, from an expected
utility perspective, between participating in and abstaining from selling the claim H.
The utility-based hedging strategy describes the adjustment to the bank’s optimal
portfolio necessitated by the derivative trade.
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6 Static Portfolio Optimization
In this section, we consider a static portfolio optimization problem, where trading occurs
only at two times: today (t = 0) and at a future terminal date (t = T ). The investor wishes
to set up a portfolio ϕ today that maximizes their expected utility of terminal wealth
WT (ϕ) according to a utility function u. For simplicity, we focus on the pure maximization
problem without considering hedging positions, i.e., we set H = 0. We will show that
this problem has at least one solution if and only if the market (Ω,F ,P, {Ft}Tt=0, X) is
arbitrage-free.

6.1 Static Utility Optimal Strategies and the Absence of Arbi-
trage

Let X0 denote the vector of asset prices at time t = 0, and XT the vector of asset prices at
time T . Let r denote the risk-free interest rate (assumed constant), so that the risk-free
asset grows to (1 + r)T over the period [0, T ].
Define the vector of discounted net gains as

Y := XT

(1 + r)T −X0.

Thus, Y represents the discounted profit or loss per unit of each asset over the period
[0, T ].
Consider an initial investment of W0, with a portfolio ϕ such that the initial cost is
ϕ ·X0 = W0. The terminal wealth of the investor is

WT (ϕ) = ϕ ·XT = (1 + r)T (W0 + ϕ · Y ) .

Therefore, maximizing the expected utility of terminal wealth WT (ϕ) is equivalent to
maximizing the expected utility of W0 + ϕ · Y .
Since (1 + r)T is a constant, we can define a new utility function ũ by

ũ(x) = u
(
(1 + r)Tx

)
,

so that
u (WT (ϕ)) = ũ (W0 + ϕ · Y ) .

Therefore, the original optimization problem is equivalent to maximizing EP [ũ (W0 + ϕ · Y )].
Since W0 is given and ũ is strictly increasing, maximizing EP [ũ (W0 + ϕ · Y )] over ϕ is
equivalent to maximizing EP [ũ (ϕ · Y )] over ϕ.

Assumption 6.1. Let u : D → R be a utility function and Y the vector of discounted
net gains. Assume either of the following:

i) D = R and u is bounded from above, or

ii) D = [a,∞) for some a < 0, and we optimize over the set of φ such that
φ ·Y ≥ a a.s. In this case, we also assume that for those φ the expected utility
EP [u(φ · Y )] is finite.

76



In both cases above, we define

Ξ :=
{
ϕ ∈ Rd : ϕ · Y ∈ D a.s.

}
.

We are thus led to study the following unconstrained optimization problem:
Static Utility Maximization Problem: Let u : D → R be a utility function. Maximize

EP [u (ϕ · Y )]

over all portfolios ϕ such that ϕ · Y ∈ D almost surely. Theorem 6.3 below shows that
the maximization problem only makes sense in an arbitrage-free market, just as pricing
of portfolios and derivatives. We need a lemma first:

Lemma 6.2. i) Let h : Rd → R∪ {−∞} be a concave and upper semicontinuous
function with h(0) > −∞. Then h attains its supremum on Rd if for all ϕ ̸= 0,

lim
α→∞

h(αϕ) = −∞.

ii) Let u : D → R be a utility function, where D = [a,∞) with a < 0. Let
0 ≤ b < −a, and let X ≥ 0 be a random variable. Then for all α ∈ (0, 1], the
implication

EP [u (αX − b)] <∞ ⇒ EP [u (X)] <∞
holds.

Proof. Proof of (i): Since h is concave and upper semicontinuous, its epigraph is a closed
convex set. The condition limα→∞ h(αϕ) = −∞ for all ϕ ̸= 0 implies that h is coercive, i.e.,
it tends to −∞ at infinity in every direction. Therefore, the level sets {ϕ ∈ Rd : h(ϕ) ≥ c}
are compact for any c ∈ R. By the Weierstrass theorem, a continuous function on a
compact set attains its maximum. However, since h may not be continuous everywhere,
but upper semicontinuity suffices to ensure that the supremum is achieved. Proof of (ii):
Let α ∈ (0, 1] and suppose that

EP [u (αX − b)] <∞.

Since u is concave and strictly increasing, we can use the inequality

u(X) ≤ 1
α
u (αX − b) +

(
1− 1

α

)
u

(
b

1− α

)
.

Note that b
1−α ∈ D because 0 ≤ b < −a and α ∈ (0, 1].

Taking expectations, we get

EP [u (X)] ≤ 1
α
EP [u (αX − b)] +

(
1− 1

α

)
u

(
b

1− α

)
.

Since the right-hand side is finite by assumption and u
(

b
1−α

)
is finite, it follows that

EP [u (X)] <∞.
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Theorem 6.3. Let u : D → R be a utility function satisfying Assumption 6.1,
and let Y be the vector of discounted net gains. Then a maximizer in the utility
maximization problem exists if and only if the market is free of arbitrage.

Proof. We will prove the two implications separately. Suppose the market admits an
arbitrage opportunity; that is, there exists a portfolio ϕ0 ∈ Rd such that

ϕ0 · Y ≥ 0 a.s., and P (ϕ0 · Y > 0) > 0.

Consider the sequence of portfolios ϕn = nϕ0 for n ∈ N. Then,

ϕn · Y = n (ϕ0 · Y ) ≥ 0 a.s.,

and ϕn · Y tends to +∞ on the set {ϕ0 · Y > 0}.
Since u is strictly increasing and defined on D, which is either R or [a,∞) with a < 0,
and u is bounded above in the first case or satisfies u(+∞) = +∞ in the second case, it
follows that

lim
n→∞

u (ϕn · Y ) = +∞ a.s.

Therefore,
lim
n→∞

EP [u (ϕn · Y )] = +∞.

This contradicts the existence of a maximizer since the expected utility can be made
arbitrarily large, implying that no finite maximum exists.
Assume the market is arbitrage-free. We aim to show that the utility maximization
problem

max
ϕ∈Ξ

EP [u (ϕ · Y )]

attains its maximum. Consider the function h : Ξ→ R ∪ {−∞} defined by

h(ϕ) = EP [u (ϕ · Y )] .

We will show that h satisfies the conditions of Lemma 6.2, ensuring that h attains its
supremum on Ξ. First, note that h is concave in ϕ because u is concave and the expectation
operator is linear.
Second, we need to verify that h is upper semicontinuous (u.s.c.) on Ξ. Since u is
continuous and ϕ · Y is continuous in ϕ, it follows that u (ϕ · Y ) is continuous in ϕ for
almost every ω ∈ Ω. By Fatou’s lemma and dominated convergence (under appropriate
integrability conditions), we can conclude that h is u.s.c.
Third, we must show that for all ϕ ̸= 0,

lim
α→∞

h(αϕ) = −∞.

Suppose not; then there exists a sequence αn → ∞ such that h (αnϕ) remains bounded
from below. However, since the market is arbitrage-free, we cannot have ϕ · Y tending
to +∞ with non-negligible probability. Moreover, due to the concavity and behavior of
u at infinity (either bounded above or u(−∞) = −∞), it follows that h (αϕ) → −∞ as
α→∞.
Finally, since h is concave, u.s.c., and satisfies the condition limα→∞ h(αϕ) = −∞,
Lemma 6.2 implies that h attains its maximum on Ξ. Therefore, a maximizer exists.
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Theorem 6.4. Let u : D → R be a continuously differentiable utility function satis-
fying Assumption 6.1. Assume, additionally, that EP [|u (ϕ · Y ) |] <∞ for all ϕ ∈ Ξ.
Let the maximizing ϕ∗ be an interior point of Ξ. Then Y u′ (ϕ∗ · Y ) ∈ L1(Ω,F ,P)
and

EP [Y u′ (ϕ∗ · Y )] = 0. (64)

Proof. If differentiation and expectation commute, one has

∇ϕEP [u(ϕ · Y )] = EP [u′(ϕ · Y )Y ] ,

and the result follows by taking ϕ = ϕ∗. Since it is not clear that the commutation is
valid, we directly show that the right hand side is zero at ϕ = ϕ∗. Take η ∈ Rd and
ε ∈ (0, 1]. Put ϕε = ϕ∗ + εη, then ϕε ∈ ϕ for all ε sufficiently small, ε < ε0 say. For those
ε we put f(ε) := u(ϕε · Y ) and

∆ε := u(ϕε · Y )− u(ϕ∗ · Y )
ε

= η · Y
εη · Y

.

Note that EP [∆ε] ≤ 0, because EP [u(ϕ∗ · Y )] is maximal. Concavity of u gives that f is
concave too. Hence ∆ε is increasing for ε ↓ 0, with limit η · Y u′(ϕ∗ · Y ). The assumption
that u(ϕ·Y ) ∈ L1(Ω,F ,P) for all ϕ ∈ Ξ implies that ∆ε0 ∈ L1(Ω,F ,P). Hence ∆ε−∆ε0 is
nonnegative and increasing for ε ↓ 0, which enables us to apply the Monotone convergence
theorem to get

0 ≥ EP [∆ε] ↑ EP [η · Y u′(ϕ∗ · Y )] ,
where the expectation on the right hand side is a finite number. We conclude that
η · EP [Y u′(ϕ∗ · Y )] ≤ 0 for all η ∈ Rd. So we can replace η with −η in the last inequality
and we conclude that the linear map η 7→ η ·EP [Y u′(ϕ∗ · Y )] is identically zero. But then
we must have EP [Y u′(ϕ∗ · Y )] = 0.

Proposition 6.5. Under the assumptions of Theorem 6.4, and assuming the market
is arbitrage-free, define

dP∗

dP
= u′ (ϕ∗ · Y )

EP [u′ (ϕ∗ · Y )] . (65)

Then P∗ is an equivalent martingale measure, i.e., a risk-neutral measure.

Proof. First, we show that E [u′(ϕ∗ · Y )] <∞, so that P∗ is well defined. Define

c := sup{u′(x) : x ∈ D and x ∈ [−|ϕ∗|, |ϕ∗|]}.

Consider first the case in which D = R. Then, because u′ is decreasing, we have c =
u′(−|ϕ∗|). If D = [a,∞), then c ≤ sup{u′(x) : x ∈ D} = u′(a). In both cases, we have
c <∞. By the Cauchy-Schwarz inequality, we have

|ϕ∗ · Y | ≤ |ϕ∗| · |Y |.

Hence, if |ϕ∗ · Y | > |ϕ∗|, then |Y | > 1. From this, it follows that (we split into the cases
|ϕ∗ · Y | ≤ |ϕ∗| and |ϕ∗ · Y | > |ϕ∗| and use that u′ is nonnegative)

0 ≤ u′(ϕ∗ · Y ) = u′(ϕ∗ · Y )1{|ϕ∗ · Y | ≤ |ϕ∗|}+ u′(ϕ∗ · Y )1{|ϕ∗ · Y | > |ϕ∗|}
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≤ c1{|ϕ∗ · Y | ≤ |ϕ∗|}+ u′(ϕ∗ · Y )1{|Y | > 1}
≤ c+ u′(ϕ∗ · Y )1{|Y | > 1}
≤ c+ u′(ϕ∗ · Y )|Y |1{|Y | > 1}

≤ c+ u′(ϕ∗ · Y )|Y |,
where the expression on the right-hand side has finite expectation, by Theorem 6.4.
Next, we need to verify that P∗ is a probability measure equivalent to P. Since u′ is positive
(as u is strictly increasing and continuously differentiable), and EP [u′ (ϕ∗ · Y )] < ∞, the
Radon-Nikodym derivative is well-defined and positive, and integrates to 1:

∫
Ω

dP∗

dP
dP = EP

[
u′ (ϕ∗ · Y )

EP [u′ (ϕ∗ · Y )]

]
= 1.

Therefore, P∗ is a probability measure equivalent to P.
Next, we need to show that P∗ is a martingale measure, i.e.,

EP∗ [Y ] = 0.

Indeed,

EP∗ [Y ] =
∫

Ω
Y dP∗ =

∫
Ω
Y
dP∗

dP
dP

= 1
EP [u′ (ϕ∗ · Y )]EP [Y u′ (ϕ∗ · Y )]

= 0,

where the last equality follows from (64).
Therefore, under P∗, the discounted net gains Y have zero expectation, implying that
discounted asset prices are martingales under P∗.

We will revisit this result in more specific (dynamic) settings in Sections 7.2 and 7.3.
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7 Optimal Dynamic Hedging Strategies
This section addresses the problem of portfolio optimization within a dynamic framework.
In contrast to the static case, investment decisions are not limited to a single point in time
and trades can be sequentially executed at all trading times 0 = t0 < t1 < . . . < tn = T .
The dynamic framework affords investors the capability to realign their portfolio allo-
cations at various stages, adapting to the unfolding market dynamics. Nonetheless, the
computation of optimal portfolios is challenging due to the high dimensionality of the
space of trading strategies. A prevalent method to surmount this complexity is dynamic
programming, which decomposes the problem into a series of simpler, recursively solved
stages. In certain instances, the optimization problem can be explicitly solved, or mean-
ingful insights about the solutions can be deduced.
In Section 7.1, our analysis begins with utility optimal strategies in the dynamic setting.
Specifically, we apply martingale methods to derive optimal trading strategies within
a specified geometric model, employing the Constant Relative Risk Aversion (CRRA)
utility as the criterion. Additionally, we establish a correspondence between the optimal
solutions for strategies based on Constant Absolute Risk Aversion (CARA) utility and the
concept of relative entropy. Following this, Section 3 explores the principles of variance-
optimal hedging. Contrary to maximizing expected utility, this strategy is concerned with
minimizing the variance of the residual hedging error. We will also examine the role of
risk measures and related hedging strategies.

7.1 Dynamic utility optimal trading strategies
Let us come back to one of our primary objectives of this section, the maximization of the
expected utility of terminal wealth EP [u(GT (φ))], EP [u(WT (φ))] or EP [u(WT (φ)−H)].
Here, φ represents a trading strategy and H is the pay-off function of a contingent claim
sold by our agent. Solving the two utility maximization problems on both sides of equation
(63) allows for the derivation of the utility-indifferent price π∗

u.
In this part, we present a martingale method to tackle the optimization problems presented
on both sides of

sup
ϕ

EP [u(πu(H) +GT (ϕ)−H)] = sup
ϕ

EP [u(GT (ϕ))] , (66)

with πu(H) ∈ R+. This can be done using different stochastic optimization approaches. In
this section however, we present a version of the so called martingale method to construct
optimal solutions through the construction of martingale measures. The derivations in
this section are based on the following result, that establishes a sufficient condition for
the optimality of a self-financing trading strategy in the sense of expected utility.

Theorem 7.1. Assume that the utility function u is differentiable and let φ = (W0, ϕ)
be a self-financing strategy. Define a probability measure Q ∼ P by

dQ
dP = u′(W̃T (φ))

EP

[
u′(W̃T (φ))

] . (67)

If Q is an equivalent martingale measure, then φ constitutes a utility optimal strategy.

81



Proof. Let ψ = (W ′
0, ϕ

′) denote another self-financing strategy with W0 = W ′
0. Then the

concavity of u implies

u(W̃T (ψ))− u(W̃T (φ)) ≤ u′(W̃T (φ))(W̃T (ψ)− W̃T (φ)) = E
[
u′(W̃T (φ))

] dQ
dPGT (ψ − φ).

As GT (ψ − φ) is a Q-martingale by assumption and since GT (ψ − φ) is a martingale
transform by definition, we deduce that EQ [GT (ψ − φ)] = 0 and therefore

E
[
u(W̃T (ψ))

]
≤ E

[
u(W̃T (φ))

]
,

which concludes the proof.

Remark 7.2. Note that (67) can be interpreted as a first-order condition for extrema
similar to (65) in the static case. Indeed, since the utility function u is strictly
concave, any local maxima of φ 7→ E [u(WT (φ))] is a global maxima and unique.
Following the usual steps to find extremas of a function, we set the first-derivative of
the function to zero. If we assume W̃T (φ) = G̃T (φ) and by using the chain-rule, we
obtain something as follows:

d
dφEP [u(WT (φ))] = e′(u(g(φ)))u′(g(φ))g′(φ),

for e′(·) = EP [·], g′(φ) = S̃T − S̃0 with g(φ) = ”
∫ T

0 φ dS̃”. We thus obtain:

d
dφEP [u(WT (φ))] = EP

[
u′(G̃T (φ))(S̃T − S̃0)

]

= EQ

u′(G̃T (φ))
EP

[
u′(W̃T (φ))

]
u′(W̃T (φ))

(S̃T − S̃0)


= EP [u′(GT (φ))]EQ

[
S̃T − S̃0

]
,

which equals zero, whenever (S̃t)t∈T is a Q-martingale, i.e., if the condition in The-
orem 7.1 above holds true.

In Section 8 we provide a more general approach, which can be used to solve the utility
based hedging problem using dynamic programming to optimize both sides of (66). In
the following, we show that in certain cases we can give more information on the utility
based hedge.

7.2 Utility indifferent pricing and hedging with CRRA
Let us consider that (Ω,F ,P,F, X) constitutes an arbitrage-free financial market and that
u : R→ R is a differentiable CRRA utility function.
In this section, we assume that the asset price process X = (S(0), S(1), . . . , S(d)) has the
following geometric form:

S
(0)
t = S

(0)
0 ert, t = 0, 1, . . . , T,
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and for i = 1, 2, . . . , d we set

S
(i)
t = S

(i)
0 eR

(i)
t = S

(i)
0

t∏
j=1

(1 + ∆R̂(i)
j ), t = 0, 1, . . . , T,

where ∆R̂(i)
t = e∆R(i)

t − 1 and ∆R(i)
1 ,∆R(i)

2 , . . . ,∆R(i)
t are independent and identically

distributed. The discounted price processes for i = 1, 2, . . . , d then assume the form

S̃
(i)
t = S̃

(i)
0

t∏
j=1

(1 + ∆R̃(i)
j ), (68)

with R̃
(i)
0 = 0 and ∆R̃(i)

j = 1+∆R̂(i)
j

1+r − 1.

Lemma 7.3. Assume X is an adapted process defined on the discrete-time index
set T = {0, 1, . . . , T}, and let ∆Xt := Xt −Xt−1 for t ≥ 1. Consider the difference
equation

Z = 1 + Z− •X,

where Zn− = Zn−1 for each n, and Z0 = 1. There exists a unique adapted process Z
that solves this equation. The solution Z is called the stochastic exponential of
X and is denoted by E(X). Moreover, the stochastic exponential satisfies

E(X)t =
t∏

j=1
(1 + ∆Xj)

for all t ∈ T.

Proof. Suppose Z and Z ′ are two processes satisfying Z = 1+Z−•X and Z ′ = 1+Z ′
−•X.

In particular, at time 0, we have Z0 = Z ′
0 = 1.

Assume inductively that Zn−1 = Z ′
n−1. Then at time n,

Zn = 1 + Zn−1Xn and Z ′
n = 1 + Z ′

n−1Xn.

By the induction hypothesis, Zn−1 = Z ′
n−1, hence

Z ′
n = 1 + Z ′

n−1Xn = 1 + Zn−1Xn = Zn.

Since Z0 = Z ′
0, an induction shows Z = Z ′ at all times. Thus, the solution is unique.

Starting from Z = 1 + Z− •X, we write it in discrete form:

Zt = 1 +
t∑

j=1
Zj−1∆Xj.

Instead of expanding directly, consider increments:

Zt − Zt−1 = Zt−1∆Xt.

Rearrange this to get a recursive formula:

Zt = Zt−1(1 + ∆Xt).
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Since Z0 = 1, we can solve this recursion by iteration:

Z1 = Z0(1 + ∆X1) = 1 + ∆X1,

Z2 = Z1(1 + ∆X2) = (1 + ∆X1)(1 + ∆X2),
and so forth. By induction on t, we find

Zt =
t∏

j=1
(1 + ∆Xj).

This product representation is precisely the definition of the stochastic exponential E(X).
Hence,

E(X)t =
t∏

j=1
(1 + ∆Xj).

The proof is now complete.

Using Lemma 7.3 we can write the the discounted asset price processes S̃(i) in (68) as

S
(i)
t = S̃

(i)
0 E(R̃(i))t for t = 0, 1, . . . , T.

We denote by φ∗ = (π∗, ϕ∗) the solution to the left-hand side of (66) with π∗
u = π∗, which

we assume exists and via Theorem 7.1 give rise to an equivalent martingale measure QH

defined by

dQH

dP
:= u′(W̃T (φ)−H)

EP

[
u′(W̃T (φ)−H)

] . (69)

Similarly, we let φ̂ = (0, ϕ̂) be the solution to the right-hand side of (66), which is also
assumed to exists and giving rise to an equivalent martingale measure Q0 defined by

dQ0

dP
:= u′(W̃T (φ))

EP

[
u′(W̃T (φ))

] . (70)

In the following theorem we show how sometimes one can ’reverse engineer’ the utility
optimal trading strategy ϕ such that a given model (S̃t)t∈T is a martingal under Q0. We
do this in case of the CRRA utility function and the geometric model above.

Theorem 7.4. Given λ ∈ (0,∞) as a risk aversion parameter, we define the utility
function, u : R→ R ∩ {−∞}, as follows: If λ ̸= 1, then

u(x) :=

x1−λ

1−λ , x > 0,
−∞, x ≤ 0.

(71)

If λ = 1, we define u(x) differently as:

u(x) :=
ln(x), x > 0
−∞, x ≤ 0.

(72)

Further, let γ ∈ Rd be such that γ⊺∆R̃1 > −1 and assume that it solves the following
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equatioń:

EP

[
∆R̃1

(1 + γ⊺∆R̃1)λ

]
= 0. (73)

We define the process (W̃t)t≥0 as

W̃t := W̃0 E(γ⊺R̃)t, t = 0, 1, . . . , T, (74)

and for all i = 1, . . . , d, we set

ϕ
(i)
t := γ(i)

S̃
(i)
t−1

W̃t−1, t = 0, 1, . . . , T, (75)

φ
(0)
t := W̃t−1 − (ϕ(1), . . . , ϕ(d))t(S̃(1), . . . , S̃(d))⊺t−1, t = 0, 1, . . . , T. (76)

Then ϕ = (ϕ(0), ϕ(1), . . . , ϕ(d)) is a utility optimal strategy for utility function u and
intial wealth W0 := S

(0)
0 W̃0. Moreover, the discounted wealth process W̃ ((W0, ϕ)) is

equal to W̃ defined in (74).

Proof. Let W̃0 be a discounted initial wealth and let ϕ be as in (75). Then we have

W̃t

(
(W̃0, ϕ)

)
= W̃0 +

d∑
i=1

(
ϕ(i) • S̃(i)

)
·

= W̃0 +
d∑
i=1

(γ(i)

S̃
(i)
−
W̃− • S̃(i)

)
·

= W̃0 + E(γ⊺R̃)−

d∑
i=1

(γ(i)

S̃
(i)
−
• (S̃(i)

− • R̃(i))
)

·

= W̃0 + E(γ⊺R̃)−

d∑
i=1

(
γ(i) • R̃(i)

)
·

= W̃0 +
(
E(γ⊺R̃)− • γ⊺R̃(i)

)
·

= R̃0E(γ⊺R̃),

which proves that R̃(i)
t = W̃t for all t ∈ T, where φ(0) is specified by (76).

Next, we show that φ = (W̃0, ϕ) is utility optimal for utility u given by (71) or (72).
For this set

α :=
(
EP
[
(1 + γ⊺∆R̃1)−λ

] )1/λ
, (77)

Zt := (αtE(γ⊺R̃)t)−λ, t = 0, 1, . . . , T. (78)

The process (Zt)t∈T will be our density process, that we will use to define an equivalent
martingale measure. Note that for all t = 1, . . . , T we have

Zt = Zt−1α
−λ
( E(γ⊺R̃)t
E(γ⊺R̃)t−1

)−λ
= Zt−1(α(1 + γ⊺∆R̃t))−λ.

85



Therefore, Zt = ∏t
i=1(α(1 + γ⊺∆R̃t))−λ = E(M)t with

Mt =
t∑

j=1

(
(α(1 + γ⊺∆R̃j))−λ − 1

)
.

Now, note that by definition of α and the fact that (∆R̃t)t=1,...,T are iid, yields

EP [Mt|Ft−1] = Mt−1 + EP
[
(α(1 + γ⊺∆R̃t))−λ − 1|Ft

]
=

EP
[
(1 + γ⊺∆R̃t)−λ

]
EP
[
(1 + γ⊺∆R̃1)−λ

] − 1

= Mt−1,

such that (Mt)t∈T is a martingale. Since Z = E(M) it thus follows that Z is a martingale
as well. We thus define the measure Q through its density by Q

P = ZT and note that for
all t = 1, . . . , T we have

EQ
[
∆R̃t|Ft−1

]
= EP

[
∆R̃t

Zt
Zt−1
|Ft−1

]
= EP

[
∆R̃tα

−λ(1 + γ⊺∆R̃t)−λ|Ft−1
]

= α−λEP

[
∆R̃t(1 + γ⊺∆R̃t)−λ

]
= 0.

Therefore (R̃t)t∈T is a martingale with respect to Q and so is S̃(i) = S
(i)
0 E(R̃(i)) for all

i = 1, 2, . . . , d. Since Q by definition of Z and the properties of the utility function u
satisfies:

ZT = u′(WT (ϕ))
EP [u′(WT (ϕ))] ,

therefore by Theorem 7.1 the trading strategy φ = (W0, ϕ) is utility optimal for utility u
and initial capital W0.

Note that equation (73) represents a system of d equations with d unknowns, γ(1), . . . , γ(d).
For some concrete models, these equations can be explicitly solved.
Suppose ∆R̃t is sufficiently small. In this case, the approximation (1 + γ⊺∆R̃1)−λ ≈
1− λγ⊺∆R̃1 is valid. Consequently, equation (73) simplifies to

EP

[
∆R̃1

]
≈ λEP

[
∆R̃1∆R̃⊺

1

]
γ.

This leads to the following approximation for γ:

γ ≈ 1
λ

(
EP
[
∆R̃1∆R̃⊺

1

])−1
EP
[
∆R̃1

]
,

where
(
EP
[
∆R̃1∆R̃⊺

1

])−1
is approximately the inverse of the covariance matrix of ∆R̃1.

This result can be interpreted in the context of investment strategy: An investor, whether
adhering to a power utility or log utility, tends to maintain a constant relative proportion
of wealth in each asset. The degree of risk aversion influences the allocation between the
non-risky bank account and the risky assets. Notably, this optimal portfolio strategy is
independent of the investment horizon T , a finding that contradicts common financial
advice which suggests allocating more to riskier assets for longer investment horizons due
to their potential for higher returns.

86



7.3 Utility indifferent pricing and hedging with CARA
In this section, we focus on utility indifferent pricing and hedging using a CARA util-
ity function of the form u(x) = 1 − exp(−λx), where λ > 0 denotes the risk aversion
parameter. Note that the shifted utility of terminal wealth u(W̃T (φ)) − 1 depends on
the initial capital W0, only via the constant factor e−λW̃0 and therefore W0 does not
affect the optimality of strategies and the indifferent price when considering expected
utility with CARA as criterion. Therefore, without loss of generality, we can assume that
W0 = 0. In this section we do not impose any particular model for the asset price process
X = (S(0), . . . , S(d)). We denote the set of all trading strategies by H. Instead, we assume
directly that the utility maximization problems on the left and right-hand side of

sup
ϕ∈H

EP [u(πu(H) +GT (ϕ)−H)] = sup
ϕ∈H

EP [u(GT (ϕ))] ,

have solutions, i.e. the supremum is attained, and that the optimal strategies φ∗ = (0, ϕ∗)
and φ∗

H = (π∗
H , ϕ

∗
H) are linked via Theorem 7.1 to some equivalent martingale measures

Q∗ and Q∗
H , i.e., we assume that

a) sup
ϕ∈H

E
[
u(G̃T (ϕ))

]
= E

[
u(G̃T (ϕ∗))

]
holds and that Q∗ given by

dQ∗

dP = u′(G̃T (ϕ∗))
EP

[
u′(G̃T (ϕ∗))

] (79)

is an equivalent martingale measure.

b) sup
(π,ϕ)∈R×H

E
[
u(π̃ + G̃T (ϕ)−H)

]
= E [u(π̃∗

H +GT (ϕ∗
H)−H)] holds and Q∗

H , given by

dQ∗
H

dP = u′(W̃T (φ∗
H)−H)

EP

[
u′(W̃T (φ∗

H)−H)
] (80)

is an equivalent martingale measure.

Definition 7.5. Let P ∼ Q be two equivalent probability measures. We define the
relative entropy or Kullback-Leibler divergence DKL(Q,P) of Q and P as

DKL(Q,P) := EQ

[
log(dQ

dP )
]

= EP

[
dQ
dP log(dQ

dP )
]
. (81)

Lemma 7.6. For any two probability measures P and Q such that Q ∼ P, we have
DKL(Q,Q) = DKL(P,P) = 0 and DKL(Q,P) ≥ 0.

Proof. Let P and Q be two probability measures such that Q ∼ P. We have

DKL(Q,Q) = EQ

[
log dQ

dQ

]
= EQ [log(1)] = 0,
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and anlogously for P. Next, we demonstrate that DKL(Q,P) ≥ 0. By applying Jensen’s
inequality (Lemma C.2) to the negative logarithm we obtain

DKL(Q,P) = EQ

[
− log dP

dQ

]
≥ − logEQ

[
dP
dQ

]
= − log

( ∫ dP
dQ dQ

)
= − log(1) = 0,

where the penultimate equality follows from the fact that Q and P are equivalent measures,
and thus their Radon-Nikodym derivative integrates to 1.

Theorem 7.7. Let the equivalent martingale measures Q∗ and Q∗
H be as in (79)

and (80), respectively. Next, define the probability measure PH ∼ P by

dPH
dP = exp(λH̃)

EP
[
exp(λH̃)

] . (82)

Then the following assertions hold true:

i) The measure Q∗ minimzes the entropy DKL(Q,P) among all equivalent mar-
tingale measures Q ∈ P . Moreover, Q∗ does not depend on λ and the maximal
expected utility U∗ := E

[
u(G̃T (ϕ∗))

]
is given by

U∗ = 1− exp
(
−DKL(Q∗,P)

)
. (83)

ii) The measure Q∗
H minimizes the relative entropy

DKL(Q,PH) = DKL(Q,P)− λEQ

[
H̃
]

+ log(E
[
exp(λH̃)

]
)

among all equivalent martingale measures Q ∈ P . Moreover, the maximal
expected utility U∗

H := E
[
u(π̃∗

H + G̃T (ϕ∗)− H̃)
]

is given by

U∗
H = 1− exp

(
−DKL(Q∗

H ,P) + λEQ∗
H

[
H̃
]
− λπ̃∗

H

)
.

Proof. We begin with the proof of (i): For x > 0 set g(x) := x log(x) and note that since
g′′(x) = 1

x
> 0 for all x > 0 it is strictly convex on (0,∞), i.e.,

g(y)− g(x) ≥ g′(x)(y − x), for all x, y > 0.

For the risk-neutral measure Q∗ we thus obtain

g′(dQ∗

dP ) = 1 + log(dQ∗

dP ) = 1 + log(exp(−λG̃T (ϕ∗)))− log(E
[
exp(−λG̃T (ϕ∗))

]
).
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Therefore, we obtain for all equivalent martingale measures Q ∈ P the following:

DKL(Q,P) = EP

[
dQ
dP log(dQ

dP )
]

(84)

= EP

[
g(dQ

dP )
]

(85)

≥ EP

[
g(dQ∗

dP )
]

+ EP

[
g′(dQ∗

dP )
(dQ

dP −
dQ∗

dP
)]

≥ DKL(Q∗,P) + EQ
[
λG̃T (ϕ∗)

]
− EQ∗

[
λG̃T (ϕ∗)

]
= DKL(Q∗,P). (86)

This proves that Q∗ indeed minimzes the relative entropy over all equivalent martingale
measures Q ∈ P . Moreover, due to the strict convexity of g the equality in (84) holds if
and only if Q = Q∗, which implies that measure Q∗ is the unique equivalent martingale
measure minimizing the relative entropy.
To prove the formula for the expected utility U∗ in (83), we compute:

DKL(Q∗,P) = EQ∗

[
log

(dQ∗

dP
)]

= log( 1
EP

[
exp(−λG̃T (ϕ∗))

])− λEQ∗

[
G̃T (ϕ∗)

]
= − log

(
EP

[
exp(−λG̃T (ϕ∗))

] )
,

which gives
EP

[
u(G̃T (ϕ∗))

]
= 1− EP

[
exp

(
− λG̃T (ϕ∗)

)]
= 1− exp

(
−DKL(Q∗,P)

)
.

Next, we show (ii). First, note that

DKL(Q,PH) = EQ

[
log( dQ

dPH
)
]

= EQ

[
log(dQ

dP )− log(dPH
dP )

]
= DKL(Q,P)− λEQ

[
H̃
]

+ log
(
EP
[
exp(−λH̃)

] )
.

Note that
dQ∗

H

dPH
= dQ∗

H

dP
dP

dPH
= e−λ(W̃T (φ∗

H)−H̃)

EP
[
e−λ(W̃T (φ∗

H)−H̃)
] EP

[
exp(λH̃)

]
exp(λH̃)

= Ku′(W̃T (φ∗
H)),

for some positive constant K. It follows now from part (i), that Q∗
H minimzes the relative

entropy with respect to PH among all equivalent martingale measures Q ∈ P and the
formula for the expected utility follows from that as well, since

EP

[
u(W̃T (φ∗

H)
]

= 1− EP

[
exp(−λ(W̃T (φ∗

H)− H̃))
]

= 1− e−λπ∗
H exp(−DKL(Q∗,PH)).

This proves the assertions.
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Recall that given the two utility optimal strategies φ∗ and φ∗
H we can define the utility

based hedging strategy φ := φ∗
H − φ∗, as this is the strategy that adjusts the banks

utility optimal strategy according to the contingent claim trade. We have the following:

Theorem 7.8. In the situation of Theorem 7.7, the following holds true:

i) The utility-based hedging strategy φ and the measure Q∗
H depend on the pre-

mium π∗
H only through the bank account part.

ii) The (discounted) utility indifferent price π̃u(H) is given by

π̃u(H) = 1
λ

log
(
E
[
eλH̃

] )
+DKL(Q∗,P)−DKL(Q∗

H ,PH)
)

(87)

= 1
λ

log
(
EQ∗

[
exp

(
− λ(G̃T (φ)− H̃)

)] )
.

Proof. (i) We already observed that the inital investment enters the shifted utility only
as multiplicative constant. The same holds for the premium π∗

H . Therefore, it does not
affect the optimaility of a trading strategy and the equivalent martingale measure Q∗

H .
(ii) By part (i) and (ii) of Theorem 7.7, the utility indifferent price π∗

u satisfies the following
equation:

1− exp(−DKL(Q∗,P)) = 1− E
[
eλH̃

]
exp(−DKL(Q∗

H ,PH)) exp(−λπ̃∗
H).

Therefore, eλπ̃∗
H = E

[
exp(λH̃)

]
exp(−DKL(QH ,PH) +DKL(Q∗,P)), which is equivalent to

π̃∗
H = 1

λ

(
log(EP

[
eλH̃

]
)−DKL(Q∗

H ,PH) +DKL(Q∗,P)
)

= 1
λ

(
λEQ∗

H

[
H̃
]
−DKL(Q∗

H ,PH) +DKL(Q∗,P)
)
.

But EP

[
exp

(
− λφ∗ • S̃T

)]
= EP

[
exp

(
− λ(π∗

u(H) + φ∗
H • S̃T − H̃)

)]
due to the fact that

U∗ = U∗
H(π∗

u(H)) and hence exp
(

e−λπ∗
u(H)

)
= EQ∗

[
exp

(
− λ(−H̃ + φ • S̃T )

)]
, by φ∗

H =
φ∗ + φ and the fact that

dQ∗

dP =
exp

(
− λφ∗ • S̃T

)
EP

[
exp

(
− λφ∗ • S̃T

)] .
This concludes the proof.

The quantities above all depent on the risk-aversion parameter λ > 0. To reflect that, we
henceforth denote the respective quantities as uλ, U∗(λ), U∗

H(π, λ), φ∗(λ), φ∗
H(λ), φλ and

lastly π∗
uλ

(H), the utility indifferent price. In the following theorem we treat the extreme
cases that λ→ 0 and λ→∞. We need the following lemma:

Lemma 7.9. With the notation from above we have:

i) φ∗(λ) = λ−1φ∗(1) and U∗(λ) = U∗(1) for any λ > 0,
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ii) λ 7→ π∗
uλ)

(H) is increasing on R+.

Proof. (i) Note that for some normalizing constant c > 0, we have:
dQ∗

dP = cu′
1

(
W̃T (φ∗(1))

)
= c exp(−φ(1)⊺S̃T ) = c

λ
u′
λ(W̃T ( 1

λ
φ∗(1))).

Since Q∗ ∈ P , we conclude that λ−1φ∗(1) is an optimal portfolio for uλ by Theorem 7.1.
The second assertion follows from part (i) in Theorem 7.7. For (ii), by Theorem 7.8

π∗
uλ

(H) = EQ∗
H

[
H̃
]

+ 1
λ

(
DKL(Q∗,P)−DKL(Q∗

H ,P)
)

= inf
Q∈P

(
EQ

[
H̃
]

+ 1
λ

(
DKL(Q∗,P)−DKL(Q,P)

))
.

As Q∗ is minimal, we find that DKL(Q∗,P)−DKL(Q,P) ≤ 0 for any Q ∈ P and therefore
π∗
uλ

(H) is increasing in λ.

For large risk aversion we have the following result:

Theorem 7.10. Let the utility indifferent price be denoted by π∗
uλ

(H). Then the
following holds true:

i) π∗
uλ

(H) → sup Π(H) as λ → ∞, i.e., the utility indifferent price converges to
the upper price bound of arbitrage-free prices.

ii) The utility based hedging strategy φ(λ) is a so called asymptotic superhedge
for H, i.e., it satisfies

lim inf
λ→∞

W̃T (φ(λ)) ≥ H P-a.s., (88)

where W̃T (φ(λ)) = π∗
uλ

(H) + (φ(λ) • S̃)T is the terminal value of the utility
based hedging strategy.

iii) If the cheapest superhedge ψ is unique, then Wt(φ(λ)) → Wt(ψ) for all t ∈ T
as λ→∞.

Proof. We provide the proof for the case of a finite probability space (Ω,F ,P). Observe
that the inequality DKL(Q∗,P)−DKL(Q∗

H ,P) ≤ 0 and (87) imply π̂(λ) ≤ EQ∗
H

[
H̃
]
≤ π̂uλ

for λ > 0. We address the first two assertions by contradiction.
Suppose supλ>0 π̂(λ) ≤ π̂uλ

− 2ϵ for some ϵ > 0. For a fixed λ, there exists an ωλ ∈ Ω
such that

WT (φ(λ))(ωλ) := π̂(λ) + (φ(λ) • Ŝ)T (ωλ) ≤ H̃(ωλ)− ϵ.

Otherwise, if this were not the case, π̂(λ) + ϵ < π̂uλ
would represent the discounted initial

value of a superhedge. We then conclude

U(λ) = UH(π(λ), λ)
= EP

[
uλ(W̃T (φ(λ))− H̃)

]
= 1− EP

[
exp

(
− λ(π̂(λ) + (φ(λ) • Ŝ)T − H̃)

)]
≤ 1− P({ωλ}) exp(λϵ),
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where the right-hand side converges to −∞ as λ → ∞, since the finiteness of Ω implies
minω∈Ω P({ω}) > 0. However, this contradicts U(λ) ≥ 1− e0 = 0.
Next, suppose that (88) does not hold. Then there exist an ω ∈ Ω and an ϵ > 0 such that
for some sequence of arbitrarily large λ,

W̃T (φ(λ))(ω) ≤ H̃(ω)− ϵ,
which leads to the contradiction outlined in the proof of the first statement.
To prove the last assertion, consider a sequence (λk)k∈N ⊆ R+ with λk →∞. We aim to
show that limk→∞ W̃T (φ(λk)) = W̃t(φu) for t = 0, 1, . . . , T . Starting with the terminal
trading time t = T ,
by (88), the sequence (W̃T (φ(λk))(ω))k∈N is bounded from below for any ω ∈ Ω. Since
EQ∗

[
W̃T (φ(λk))

]
= W̃0(φ(λk)) = π̂(λk) ≤ π̂u and minω∈Ω P({ω}) > 0, these sequences

are also bounded from above. Consequently, there exists a convergent subsequence of
(W̃T (φ(λk)))k∈N. Any such convergent subsequence, denoted again by (W̃T (φ(λk)))k∈N,
converges to W̃T (φ) for some self-financing strategy φ. By (88), we see that W̃T (φ) =
limk→∞ W̃T (φ(λk)) ≥ H̃, indicating that φ is a superhedge. Moreover, the finiteness of Ω
leads to

W̃0(φ) = EQ∗

[
W̃T (φ)

]
= lim

k→∞
EQ∗

[
W̃T (φ(λk))

]
= lim

k→∞
π̂(λk) ≤ π̂u.

Therefore, φ is the cheapest superhedge, and W̃T (φ) = W̃T (φu).
For t < T , pointwise convergence as k →∞ and the finiteness of Ω imply

W̃t(φ(λk)) = EQ∗

[
W̃T (φ(λk))|Ft

]
→ EQ∗

[
W̃T (φu)|Ft

]
= W̃t(φu).

This completes the proof of the last statement.

Note that for small λ, i.e., as λ → 0, we can use the following heuristic argument: We
assume that the utility-based hedge converges for λ→ 0 as

φ(λ) = η +O(λ),
where η is some limiting hedge and O(λ) represents a strategy such that O(λ)/λ is
bounded by a constant independent of λ. For φ∗

H(λ), we have

φ∗
H(λ) = φ∗(λ) + φ(λ) = 1

λ
φ∗(λ) + η +O(λ).

Regarding the utility indifferent price, we use a linear approximation
π∗
uλ

(H) = π∗
u0(H) + λδ +O(λ2),

for π∗
u0(H), δ ∈ R. Considering the expected utility maximization problem for strategies

of the above form and applying the Taylor approximation of the exponential function, we
get:
EP
[
uλ(π̃ + G̃T (φ)− H̃)

]
= 1− EP

[
exp

(
− φ∗(1) • S̃T − λ(π̃ + (η +O(λ)) • S̃T − H̃)

)]
= 1−KEQ∗

[
exp

(
− λ(π̃ + (η +O(λ)) • S̃T − H̃)

)]
= 1−K − λKEQ∗

[
(π̃ + (η +O(λ)) • S̃T − H̃)

]
+ λ2

2 KEQ∗

[(
π̃ + η • S̃T − H̃

)2
]

+O(λ3)

= 1−K + λK
(
π̃ − EQ∗

[
H̃
] )

− λ2

2 KEQ∗

[(
π̃ + η • S̃T − H̃

)2
]

+O(λ3),
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with K = EP
[
exp

(
− φ∗(1) • S̃T

)]
, assuming that S̃ is a Q∗-martingale. Ignoring the

O(λ3) term, we focus on minimizing

EQ∗

[(
π̃∗ + η • S̃T − H̃

)2
]
, (89)

over all strategies η. This problem is known as variance optimal hedging, which we
investigate in the subsequent section. Assume the minimum value is

(π̃ − W̃0)2 + ε2,

then

U∗
H(λ) = 1−K + λK(π̃ − W̃0)−

λ2

2 K
(
(π̃ − W̃0)2 + ε2

)
+O(λ3),

provided that the linear expansion of the optimal hedge is valid. The maximal utility
investment for the plain investment problem is

U∗(λ) = U∗(1) = 1− E
[
exp(−φ∗(1) • S̃T )

]
= 1−K.

The utility indifferent price π̃∗
uλ

(H) satisfies:

K(π̃(0)− W̃0)−
λ

2K
(
2δ + (π̃(0)− W̃0)2 + ε2

)
+O(λ2),

implying that π̃∗
u0(H) = W̃0 = EQ∗

[
H̃
]
, and δ = ε2/2. Thus, as λ → 0, the discounted

utility indifferent price converges to the expectation of the discounted payoff relative to
the minimal entropy martingale measure Q∗. In the first order, there is a risk premium
linearly dependent on λ and contingent on the approximation quality of the claim by a
self-financing strategy in a variance-optimal sense. In particular, the utility-based hedge
in the leading term is equivalent to the variance-optimal hedge of the claim relative to
the measure Q∗.
These results establish a connection between different approaches to valuing and hedging
derivatives. For exponential utility, a continuum of prices and hedging strategies emerges.
Superreplication, which typically requires a high option premium, is at one end of this
spectrum, while at the other end, we have formulations closely related to variance-optimal
hedging, which will be explored in the following section.
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8 Optimal Control Problems in Portfolio Theory
In this section, we delve into stochastic optimal control problems within the realm of port-
folio theory. Our focus is on elucidating three pivotal consumption-investment problems
(Problems 1-3 below) and exploring two primary methods for addressing these challenges:

i) The Dynamic Programming Method: This approach simplifies complex dynamic
portfolio optimization problems into more manageable static optimization problems.
It then tackles the original problem through a recursive solution strategy. The proofs
of key results are provided as exercises or can be understood in detail from Appendix
A.5 of Peter Spreij’s lecture notes.

ii) The Martingale Method: This method bifurcates the dynamic portfolio optimization
problem into two parts: a static optimization problem and a hedging problem. We
then use a Lagrange Multiplier technique so solve the static optimization problem.

8.1 Optimal Consumption-Investment Problems
Consider a financial market in finite-discrete time, represented as (Ω,F ,P,F, X) with
trading times T = {0, 1, 2, . . . , T} and an asset price vector X = (S(0), S(1), . . . , S(d)) for
d ∈ N. The riskless asset S(0) evolves as S(0)

t+1 = S
(0)
t (1 + rt), where (rt)t∈T is the locally

riskless rate. Risky assets follow S
(i)
t+1 = S

(i)
t (1 +R

(i)
t ) for return sequences (R(i)

t )t∈T.
Define the utility function u, denoting investor preferences. The first objective is to
maximize the expected utility from terminal wealth under budget restriction:
Problem 1. Expected Utility from Terminal Wealth max(W0,ϕ) EP [u(W0 +GT (ϕ))]

s.t. W0 = w ∈ R and ϕ is predictable.

Addressing the maximization of expected utility from consumption and terminal wealth
requires defining a consumption-investment plan:

Definition 8.1. A consumption-investment plan is a pair (Kt, φt)t∈T consisting
of a nonnegative adapted process (Kt)t∈T and a trading strategy (φt)t∈T. It is called
self-financing if

Wt(φ) = Kt + φ⊺
t+1Xt, t = 0, . . . , T − 1, (90)

and admissible if KT ≤ WT P-almost surely.

The self-financing condition (90) is expressed as:

∆Wt(φ) = φ⊺
t∆St −Kt−1, t = 1, . . . , T,

or in discounted terms:∆W̃t(φ) = φ⊺
t∆S̃t − γt−1, t = 1, . . . , T,

where γt−1 ≜ Kt−1

S
(0)
t

is the discounted consumption. The wealth evolution is then given by

W̃t(φ) = W̃0 +
t∑

s=1

(
φ⊺
t∆S̃t − γs−1

)
.
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We explore two additional optimization problems related to expected utility from con-
sumption:
Problem 2. Expected utility from consumption

max(K,φ) EP
[∑T

t=1 βtu(Kt)
]
,

s.t. W0 = w and βt ∈ (0, 1],
and (K,φ) is an admissible consumption-investment plan.

(91)

Here, βt are discount factors and u is a utility function, assumed constant across all times
t, but can be time-dependent.
Consider two utility functions uc and up for the next problem:
Problem 3. Expected utility from consumption and terminal wealth

max(K,φ) EP
[∑T

t=1 βtuc(Kt) + βTup(WT (φ)−KT )
]
,

s.t. φ is a self-financing strategy, βt ∈ (0, 1],
and K is a non-negative admissible consumption plan.

(92)

8.2 Stochastic Optimal Control
We frame Problems 1–3 from Section 8.1 in the context of stochastic optimal control
problems and address them using dynamic programming and the martingale method in
the forthcoming sections. Note here that the maximization problems on both sides of
the utility based hedging problem (63) can be considered as Problem 1 (with slight
adjustments).
Let (Vt)t∈T be a given process (think of the wealth process of some strategy) that depend
on the choice of a Rm-valued control sequence (αt)t∈T (think of a trading strategy),
that is adapted to a filtration (Ft)t∈T. More precisely, we assume that (Vt)t∈T is of the
following form:

Vt+1 = Gt(Vt, αt, εt), t = 0, . . . , T − 1, (93)

with initial value V0 and given random quantities ε0, ε1, . . . , εT−1 (think of random returns
of asset prices) that are assumed to be iid for now. If the εt for t = 0, 1, . . . , T − 1 are
k-dimensional, then the functions Gt in (93) are defined on some appropriate subsets of
Rd × Rm × Rk , and are also assumed to be jointly measurable in their arguments.
As filtration we take the family of σ-algebras (Ft)t∈T given by

Ft = σ(V0, ε0, . . . , εt−1),

and note that the processes (Vt)t∈T and (αt)t∈T are both (Ft)t∈T-adapted.
We further assume that the m-dimensional random variables αt are supposed to be of the
form

αt = α(t, V0, . . . , Vt), (94)

for certain measurable functions α(t, ·) : (Rd)t+1 → Rm, for which we use the notation
α(t, ·) ∈ B((Rd)t+1,Rm). If αt = α(t, Vt) for all t ∈ T then we say that (αt)t∈T is a
Markov control and in this case we see that the process (Vt)t∈T given by the recur-
sion (93) is Markovian.
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Lemma 8.2. The process X is Markov with respect to the filtration specified above,
if αt depends on Xt only, i.e. αt = α(t,Xt) for all t ∈ T for some measurable functions
α(t, ·) : Rd → Rm.

Proof. Left as an Exercise.

8.2.1 The Control Problem

Next, we define a general stochastic optimal control problem that includes the investment-
consumption control problems as given by Problems 1-3 as special cases:
Problem 4. Stochastic optimal control problem Let g0, . . . , gT−1 : Rd × Rm → R,
as well as gT : Rd → R be measurable functions. We refer to g0, . . . , gT as the reward
functions (think of them as utility functions). The optimal control problem is to
maximize over all controls α = (α0, . . . , αT−1) the additive over time criterion given by
the expectation

J(α) := EP

[
T−1∑
t=0

gt(Vt, αt) + gT (VT )
]
, (95)

with each αt for t = 0, 1, . . . , T − 1 as in (94).

Remark 8.3. Under assumption (94), Problem 4 is equivalent to finding measur-
able functions α(t, ·) maximizing J(α(·, ·)) in (95), where for α = (α0, . . . , αT−1) we
also write J(α)! Usually, the functions α0, . . . , αT−1 have to satisfy certain admis-
sibility constraints. These will be clear in the appropriate context and not always
explicitly mentioned. For instance, it is tacitly assumed that all random quantities
involved are such that the expectations exist.

Definition 8.4. A sequence of admissible functions α∗ = (α∗
0, . . . , α

∗
T−1) is called an

optimal control for (95) if J(α∗) = supα J(α) holds, where the supremum is taken
over all admissible control sequences α = (α0, . . . , αT−1) with α(t, ·) ∈ B((Rd)t+1,Rm)
for t = 0, . . . , T − 1.

Definition 8.5. Let (αt)t∈T be a sequence of functions and let the process (V α
t )t∈T

be defined by (93) and (94), where the notation expresses the dependence of (Vt)t∈T
on (αt)t∈T. Note that V α

0 = V0. Set JT (α) = gT (V α
T ) , and for t = 0, 1, . . . , T − 1:

Jt(α) := EP

[
T−1∑
s=t

gs(V α
s , αs) + gT (V α

T ) | Ft
]
.

The so defined adapted process (Jt(α))t∈T is called the expected future reward
process of the optimal control problem (95).
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Note, that EP [J0(α)] = J(α) and for t = 0, 1, . . . , T−2 the expected future reward process
satisfies:

Jt(α) = gt(V α
t , αt) + E

[
T−1∑
s=t+1

gs(V α
s , αs) + gT (V α

T ) | Ft
]

= gt(V α
t , αt) + E

[
E
[
T−1∑
s=t+1

gs(V α
s , αs) + gT (V α

T ) | Ft+1

]
| Ft

]
= gt(V α

t , αt) + E [Jt+1(α) | Ft] .

8.3 Dynamic Programming
The idea to obtain the control maximizing (95) is based on the dynamic programming
principle, which states that if a process is optimal over the entire sequence of periods
t = 0, 1, . . . , T , then is has to be also optimal over each single period, see Proposition 8.8
below. In the previous section’s context, this means that in order to determine the optimal
control sequence α0, . . . , αT we aim to sequentially optimize over the individual controls
αt for t = 0, 1, . . . , T . In the Theorem 8.6 below, we show that under the asssumptions of
Markov controls, i.e. if αt = α(t, Vt) for some measurable functions u(t, ·) for all t ∈ T,
this idea yields an optimal control. Let us denote the class of Markov control sequences
byM and define for certain given measurable functions v0, . . . , vT : Rd → R the following
sequence of functions:

v̂t+1(x, y) = EP [vt+1(Gt(x, y, εt))] , t = 0, . . . , T − 1. (96)

Note that the functions v̂t+1 : Rd×Rm → R are measurable in x and y. The main theorem
of this section is the following:

Theorem 8.6. Define recursively the functions (vt)t∈T by

vT (x) = gT (x), (97)
vt(x) = sup

y∈Rm
{gt(x, y) + v̂t+1(x, y)}, t = 0, . . . , T − 1. (98)

Assume that the vt are measurable functions. Then the following hold true:

i) For any control sequence α ∈M of functions (α(t, ·))t∈T one has vt(V α
t ) ≥ Jt(α)

P-almost surely and EP [v0(V0)] ≥ J(α).

ii) Let α∗ ∈ M. Then α∗ is optimal iff the supremum in (98) is attained for
y = α∗

t (x). If this happens, then vt(V α∗
t ) = Jt(α∗) and

sup
α
J(α) = J(α∗) = EP [v0(X0)] .

Remark 8.7. Theorem 8.6 depends on v̂t+1(x, y) = E [vt+1(Gt(x, y, εt)) | Ft], which
is due to the independence of V0 and the εt. This assumption might be dropped.
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Proposition 8.8 (Optimality Principle). Let α∗ = (α∗
0, . . . , α

∗
T−1) be the optimal

control of (95). Then the sequence (α∗
t , . . . , α

∗
T−1) is optimal for the corresponding

optimization problem over the time set {t, . . . , T}, when starting in Vt = V α∗
t . In

this case, the optimal value is equal to EP
[
vt(V α∗

t )
]
.

Proof. Left as an Exercise.

Algorithm: Dynamic Programming
Suppose that the suprema in Equation (98) are attained for all t ∈ T. Then define

vT (x) = gT (x)
α∗
T−1(x) = arg sup{gT−1(x, y) + v̂T (x, y)},

and by backward recursion for t ∈ {0, . . . , T − 1},

vt(x) = sup{gt(x, y) + v̂t+1(x, y)}
= gt(x, α∗

t (x)) + v̂t+1(x, α∗
t (x))

α∗
t−1(x) = arg sup{gt−1(x, y) + v̂t(x, y)}.

This yields the sequence of functions vT , α∗
T−1, vT−1, α

∗
T−2, . . . , v1, α

∗
0, v0 where the α∗

t con-
stitute the optimal sequence α∗ and EP [v0(V0)] = J(α∗). The functions vt are called the
optimal value functions.

From here on, we drop the assumption that the ε1, . . . , εT−1 are independent. One can
still define random functions v̂t+1 as above, but now we alter the definition in (96) to

v̂t+1(x, y) := E [vt+1(Gt(x, y, εt)) | Ft] . (99)

Then the v̂t+1(x, y) are in general not deterministic anymore, but become Ft-measurable
random variables. However, many of the above results continue to hold, but we have to
reprove some of the results (see also Appendix of Peter Spreij’s lecture notes).
The following proposition uses the concept of essential supremum. We will consider
B(Rd) × Ft-measurable functions vt, meaning that the mapping (x, ω) 7→ vt(x, ω) is
B(Rd) × Ft-measurable. As usual, dependence on ω is often suppressed and then we
write vt(x) for the random variable ω 7→ vt(x, ω).

Proposition 8.9. Suppose that B(Rd)×Ft-measurable functions vt (for t = 0, . . . , T )
P-almost surely satisfy

vT (x) = gT (x),
vt(x) = ess sup{gt(x, y) + E [vt+1(Gt(x, y, εt))|Ft] : y ∈ Ft}, t ≤ T − 1.

Then, for any admissible control α it holds that vt(V
α

t ) ≥ Jt(α) for t ∈ T and the
optimum is given by Ft measurable random variables α∗

t (x) for which the supremum
is attained.
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8.3.1 Maximizing expected utility from terminal wealth using dynamic
programming

We align Problem 1 with the general stochastic optimal control problem as in (95).
Recall from Section 8.1 the aim to maximize expected utility from terminal wealth using
utility function u:  max(W0,ϕ) EP [u(W0 +GT (ϕ))] ,

s.t. W0 = w and ϕ is predictable.
(Problem 1)

In the context of (95), we set gt = 0 for t = 0, 1, . . . , T − 1 and gT = u, with Vt as the
wealth at time t for a self-financing strategy φ = (w, ϕ).
We consider Rd-valued predictable processes (ϕt)t∈T satisfying ϕ0 = 0 andWT ((w, ϕ)) ≥ 0.
For relative portfolio holdings, define control variables αt = (α(0)

t , α
(1)
t , . . . , α

(d)
t ) as

α
(i)
t = ϕ

(i)
t+1S

(i)
t

Vt
for i = 0, 1, . . . , d, (100)

and note that α(0)
t = 1−∑d

i=1 α
(i)
t with α

(i)
t ∈ (0, 1).

The self-financing property leads to

Vt = φ
(0)
t S

(0)
t +

d∑
i=1

φ
(i)
t S

(i)
t = φ

(0)
t+1S

(0)
t +

d∑
i=1

φ
(i)
t+1S

(i)
t .

Given the predictable nature of ϕ and the evolution of S(i)
t+1 = S

(i)
t (1 +R

(i)
t ), we derive

Vt+1 = Vt + φ
(0)
t+1∆S

(0)
t +

d∑
i=1

φ
(i)
t+1∆S

(i)
t

= Vt + φ
(0)
t+1S

(0)
t rt +

d∑
i=1

φ
(i)
t+1S

(i)
t R

(i)
t

= Vt + Vt
(
α

(0)
t rt +

d∑
i=1

α
(i)
t R

(i)
t

)
. (101)

Comparing (93) with (101), we find that Vt+1 = Gt(Vt, αt, ξt), with ξt = Rt, Vt and αt as
defined above and such that

Gt(Vt, αt, ξt) = Vt
(
α

(0)
t (1 + rt) +

d∑
i=1

α
(i)
t (1 + ξ

(i)
t )
)
. (102)

For maximizing expected utility from terminal wealth only, we have

gt(Vt, αt) = 0 for t < T, and gT (VT , αT ) = u(VT ),

leading to the dynamic programming algorithm:vT (v) = gT (v) = u(v),
vt(v) = maxαt EP [vt+1(Gt(Vt, αt, Rt)) | Vt = v] , t = 0, 1, . . . , T − 1,

(103)

with no maximization over αT . The optimal control sequence u∗, if existent, is derived
accordingly. Indeed, let us consider as example the problem in the binomial model of
Section 2.5.
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Example 8.10 (Maximizing expected utility out of terminal wealth in the Binomial
model). Recall the Dynamic Programming algorithm (103), namelyvT (v) = u(v) and, for t < T,

vt(v) = max
αt

EP [vt+1(Gt(Vt, αt, ξt)) | Vt = v]

where the dynamics Gt(Vt, αt, ξt) were specified as above in (102) namely

Gt(Vt, αt, ξt) = Vt
(
α

(0)
t (1 + rt) +

d∑
i=1

α
(i)
t (1 + ξ

(i)
t )
)
.

The only particular aspect for the binomial model here is that d = 1 and, letting
αt = α

(1)
t = ϕ

(1)
t+1St

Vt
, one has α(0)

t = (1 − αt). With prohibition of short selling, i.e.,
requiring ϕ(1)

t > 0, we obtain αt ∈ (0, 1). If rt = 0, we may then write

Gt(Vt, αt, ξt) = Vt
(
1 + αtRt

)
.

An investment strategy is here given by the two-dimensional vector αt = (α(0)
t , α

(1)
t )

where α(0)
t and α(1)

t denote the number of units of the non-risky and the risky assets
respectively held in the portfolio in period t. Recall also that the process αt is
supposed to be predictable, i.e. αt is taken to be Ft−1-measurable. We now describe
the backwards recursion, from period T−1 to 0, to determine the optimal investment
strategy (α∗

t )t=0,...,T−1.
Take period T − 1: we have to decide for α(0)

T−1, α
(1)
T−1. Le ST−1 = S0U

nDT−n−1.
Recalling that we had assumed r = 0, we have to impose that for all outcomes, i.e.
independently on whether prices go up or down,

α
(1)
T ST + α

(0)
T = VT = V ∗ (104)

This implies that the following system of equations in α
(1)
T , α

(0)
T has to be satisfied:

α
(1)
T ST−1U + α

(0)
T = v

(
p

q

)n+1 (1− p
1− q

)T−n−1

(prices go up)

α
(1)
T ST−1D + α

(0)
T = v

(
p

q

)n (1− p
1− q

)T−n

(prices go down),

where p = P(Rt = U) and q = 1+r−D
U−D , from which we obtain

α
(1)
T ST−1(U −D) = v(1 + r)T

(p
q

)n (1− p
1− q

)T−n−1

−
(
p

q

)n+1 (1− p
1− q

)T−n
 .

Consequently, we have

α
(1)
T = v(1 + r)T

ST−1(U −D)

(
pq

(p− q)(1− q)

)n (1− p
1− q

)T−n−1

,
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and therefore

α
(1)
T−1 = v(pq)n/T (1− p)T−n−1/T

(p− q)S0Un(U −D)(1− q)T−n−1

α
(0)
T−1 = v

(
q

p

)n (1− p
1− q

)T−n−1
(
U(1− p)q −D(1− q)p

)
(U −D)q(1− q)

Recalling the self-financing condition, the fact that q = 1+r−D
U−D , and putting

C(p, q) := U −D
p− q

+ (Dq −Dp) + (Dpq − Upq),

for the optimal value induced in period T − 1 we thus obtain

V ∗
T−1 = α

(1)
T−1ST−1 + α

(0)
T−1 = v

(
pq

(1− q)

)n (1− p
1− q

)T−n−1

C(p, q). (105)

Notice now that V ∗
T−1 has the same structure as V ∗

T so that the calculations for the
following period T − 2 proceed in exactly the same way as for T − 1 and so forth,
which allows to straightforwardly complete the backwards recursion.
In the generic period t ≤ T , with n ≤ t up-movement up to time t, the condition (104)
becomes

α
(1)
t St + α

(0)
t = V ∗

t (106)

and one obtains

α
(1)
t = v(pq)n/t(1− p)t−n−1/t

(p− q)S0Un(U −D)(1− q)t−n−1

α
(0)
t = v

(
q

p

)n (1− p
1− q

)t−n−1
(
U(1− p)q −D(1− q)p

)
(U −D)q(1− q)

with the optimal wealth

V ∗
t = v

(
p

q

)n (1− p
1− q

)t−n
. (107)

Notice also that the ratio of the wealth invested in the risky asset is

πt = α
(1)
t+1

α
(1)
t St

= 1
(U −D)q(1− q)(p− q) ,

and it is independent of t and St. It follows that the optimal strategy requires
investing in the risky asset, in each period and in every state, the same fraction of
wealth.
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8.3.2 Maximizing expected utility from consumption using dynamic
programming

We align Problem 2 with the general stochastic optimal control problem as follows:
max(K,φ) EP

[∑T
t=1 βtu(Kt)

]
s.t. W0 = w and αt ∈ (0, 1],
and (K,φ) is an admissible consumption-investment.

(Problem 2)

Incorporating a consumption process into the optimal control setting, for a self-financing
consumption-investment plan (K,α), we have:

Vt+1 = Vt + ϕ
(0)
t+1∆S

(0)
t +

d∑
i=1

ϕ
(i)
t+1∆S

(i)
t −Kt

= Vt

(
α

(0)
t rt +

d∑
i=1

α
(i)
t R

(i)
t

)
−Kt

= Vt

(
(1 + rt) +

d∑
i=1

α
(i)
t

(
R

(i)
t − (1 + rt)

))
−Kt(1 + rt),

where α(0), . . . , α(d) denote the relative portfolio holdings α(i) = ϕ
(i)
t+1S

i
t

Vt
as before. There-

fore, we identify:

Vt+1 = Gt(Vt, αt, ξt),

with

Gt(Vt, αt, ξt) = Vt

(
(1 + rt) +

d∑
i=1

α
(i)
t

(
ξ

(i)
t+1 − (1 + rt)

))
−Kt(1 + rt).

Here, the control sequence is αt = (α(1)
t , . . . , α

(d)
t , Kt), controlling both relative portfolio

holdings and consumption at each time t = 0, 1, . . . , T − 1. The utility is solely on
consumption:

gt(Vt, αt) = u(Kt), t = 0, . . . , T,

with the wealth Vt entering only through the constraint KT ≤ VT .
The dynamic programming algorithm is thus defined as:

vT (v) =
u(v) if KT = v,

−∞ if KT > v,

vt(v) = maxαt

(
u(Kt) + βEP [vt+1(Gt(Vt, αt, ξt)) | Vt = v]

)
,

where u(K) = −∞ for K < 0 ensures nonnegativity of K, and we set:

Jt ≜ max
Kt,...,KT (KT ≤VT )

EP

[
T∑
s=t

βs−tu(Ks) | Vt = v

]
,

with the condition KT ≤ VT enforced by setting u(KT ) = −∞ for KT > VT .
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8.3.3 Maximizing expected utility from consumption & terminal wealth
using dynamic programming

In the previous case of expected utility only from consumption, all of VT was consumed at
the terminal time t = T . Here we generalize this problem by leaving VT −KT for future
investment and maximizing expected utility from consumption of Kt for t = 0, . . . , T , as
well as from the terminal wealth VT −KT .
Letting uc(·) and up(·) denote the utility functions for consumption and terminal wealth
respectively, then the problem is given by:

max(K,φ) EP
[∑T

t=1 βtuc(Kt) + βTup(WT (φ)−KT )
]
,

s.t. φ is a self-financing strategy,
and K is a non-negative admissible consumption plan.

(Problem 3)

For this problem, we can now adapt the previous solution method: we identify

Vt+1 = Gt(Vt, αt, ξt)

with ξt = Rt and

Gt(Vt, αt, ξt) = Vt

(
(1 + rt) +

d∑
i=1

α
(i)
t

(
R

(i)
t − (1 + rt)

))
−Kt(1 + rt),

and with the control sequence α given by

αt = (α(1)
t , . . . , α

(d)
t , Kt)

where α(i)
t = ϕ

(i)
t+1S

(i)
t

Vt
as before. In the present case, however, we have

gt(Vt, αt) = uc(Kt), t = 0, . . . , T − 1,

and terminal utility

gT (VT , αT ) = up(VT −KT )

The dynamic programming algorithm becomes

vT (x) = max
0≤K≤x

[uc(K) + up(x−K)]

vt(x) = max
αt

(
uc(Kt) + βtEP [vt+1(Gt(Vt, αt, ξt)) | Vt = v]

)
and notice that the only difference with the pure consumption-investment problem in
Section 8.3.2 is the form of vT (x) (in the previous case it is essentially given by vT (x) =
u(x) = uc(x)).
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8.4 The Martingale Method
The martingale method serves as a second approach, alongside the dynamic programming
algorithm, for addressing stochastic optimal control problems in portfolio theory. This
method hinges on the following key observation regarding hedging contingent claims in an
arbitrage-free market: to hedge a contingent claim H, an initial investment W0 = EQ

[
H̃
]

is needed for some EMM Q ∈ P , to construct a trading strategy φ = (W0, ϕ) such
that W0 +Gt(ϕ) = EQ

[
H̃ | Ft

]
for t ∈ T, i.e. to finance a replicating strategy. Finding a

replicating trading strategy ϕ is equivalent to representing the martingale (EQ
[
H̃ | Ft

]
)t∈T

as a discrete stochastic integral.
In scenarios where we focus on consumption-investment Problems 1-3 instead of hedging
a contingent claim H, we can view the optimal reachable wealth from an initial investment
as a claim to replicate using the controls. The martingale method thus involves the
following three steps:

i) Deriving the set of all reachable terminal portfolio wealth WT ;

ii) Computing the optimal reachable wealth W ∗
T ;

iii) Determining a self-financing strategy ϕ∗ such that WT (ϕ∗) = W ∗
T .

We call this method the martingale method, which effectively decomposes the dynamic
portfolio optimization problem into a static problem of computing the optimal reachable
wealth and a hedging problem, where the optimal reachable wealth is considered as the
contingent claim.

8.4.1 Reachable Portfolio Values

In the first step, we aim to determine the set of reachable portfolio values with a fixed
initial investment v:

V ≜ {WT : WT = WT (ϕ) for some self-financing and predictable ϕ such that W0 = v} .

Here, WT (ϕ) denotes the terminal portfolio wealth resulting from a self-financing trading
strategy ϕ that starts with initial wealth W0 = v.
Since the market is arbitrage-free, the Fundamental Theorem of Asset Pricing tells us
that discounted asset prices are martingales under some equivalent martingale measure
(EMM) Q. By Doob’s system Theorem 1.16, it follows that for any self-financing strategy
ϕ, the discounted terminal wealth W̃T = WT (ϕ) · (S(0)

T )−1 satisfies:

v = W0 = EQ

[
W̃T

]
,

for any Q in the set P of EMMs. Therefore, the initial wealth v equals the expected
discounted terminal wealth under any EMM.

Complete Market Case In a complete market with a unique equivalent martingale
measure Q, the set of reachable terminal wealths is:

V =
{
WT : EQ

[
W̃T

]
= v

}
, (108)

where W̃T = WT · (S(0)
T )−1.

104



Incomplete Market Case In an incomplete market with multiple EMMs, the set of
reachable terminal wealth is characterized by:

V =
{
WT : EQ

[
W̃T

]
= v for some Q ∈ P

}
, (109)

where P denotes the convex set of all EMMs.

8.4.2 Optimal Reachable Portfolio Values Using the Lagrange Multi-
plier Technique

To determine an optimal W ∗ in the set of reachable portfolio values V , we employ the
Lagrange multiplier technique, both in complete and incomplete market settings.

The Complete Market Case In the complete market, V is given by equation (108).
The optimal terminal wealth W ∗ maximizes the expected utility:

max
WT ∈V

EP [u(WT )] .

This can be reformulated using the Lagrangian approach. Let L := dQ
dP denote the Radon-

Nikodym derivative of Q with respect to P, and let λ be the Lagrange multiplier associated
with the budget constraint. The optimization problem becomes:

max
WT

EP

[
u(WT )− λ(S(0)

T )−1LWT

]
+ λv.

First-Order Condition and Determining λ Taking the derivative with respect to
WT and setting it to zero, we get:

u′(WT ) = λ(S(0)
T )−1L =⇒ WT = I

(
λ(S(0)

T )−1L
)
,

where I(y) = (u′)−1(y) is the inverse of the marginal utility function. The Lagrange
multiplier λ is found by satisfying the budget constraint:

v = EQ
[
(S(0)

T )−1WT

]
= EP

[
L(S(0)

T )−1WT

]
= EP

[
L(S(0)

T )−1I
(
λ(S(0)

T )−1L
)]
.

Define the function:
V (λ) := EP

[
L(S(0)

T )−1I
(
λ(S(0)

T )−1L
)]
.

If V (λ) is invertible, we can solve for λ = V −1(v), and thus find the optimal terminal
wealth:

W ∗ = I
(
V −1(v)(S(0)

T )−1L
)
.

The optimal expected utility is then EP [u(W ∗)] = log v − EP
[
log

(
L(S(0)

T )−1
)]
.

Example 8.11. For the logarithmic utility function u(WT ) = logWT , we have
u′(WT ) = 1

WT
and I(y) = 1

y
. Then:

W ∗ = 1
λ(S(0)

T )−1L
= v

L(S(0)
T )−1

,

since the budget constraint simplifies to v = 1
λ

implying λ = 1
v
.
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Example 8.12. Consider a binomial model with a Bernoulli process BT ∼ Bin(T, p)
representing the number of up movements. Using u(WT ) = logWT , we have:

W ∗ = v

(
p

q

)BT
(

1− p
1− q

)T−BT

,

where q is the risk-neutral probability of an up move, and L =
(
q
p

)BT
(

1−q
1−p

)T−BT .
The optimal expected utility is:

EP [u(W ∗)] = log v − T
[
p log

(
q

p

)
+ (1− p) log

(
1− q
1− p

)]
.

The Incomplete Market Case with Finitely Many Extremal EMMs In an in-
complete market with a finite number J of extremal equivalent martingale measures Qj,
we proceed similarly.
Let Lj := dQj

dP and consider a vector of Lagrange multipliers λ = (λ1, . . . , λJ). The
optimization problem becomes:

max
WT

EP

u(WT )−
 J∑
j=1

λjLj(S(0)
T )−1

WT

+
J∑
j=1

λjv.

First-Order Condition Differentiating with respect to WT :

u′(WT ) =
J∑
j=1

λjLj(S(0)
T )−1 =⇒ WT = I

 J∑
j=1

λjLj(S(0)
T )−1

 .
Budget Equations The multipliers λj are determined by the budget constraints, which
require that WT is attainable under each Qj:

v = EQj

[
(S(0)

T )−1WT

]
= EP

[
Lj(S(0)

T )−1WT

]
= EP

[
Lj(S(0)

T )−1I

(
J∑
k=1

λkLk(S(0)
T )−1

)]
, ∀j = 1, . . . , J.

This forms a system of J equations that can be solved for λj.

8.4.3 Maximizing Expected Utility from Consumption Using the Mar-
tingale Method

To maximize utility from consumption over multiple periods, we adapt the three-step
martingale method used for maximizing utility from terminal wealth. The steps are
modified as follows:

i) Determine the set of attainable consumption processes.

ii) Determine the optimal attainable consumption process.

iii) Determine an investment strategy that allows consuming according to the optimal
process.
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Step i): Determining the Set of Attainable Consumption Processes We begin
by establishing how consumption affects the portfolio’s evolution.

Lemma 8.13. Given an initial wealth v ≥ 0, a consumption process (Kt)Tt=0, and a
self-financing trading strategy ϕ, the portfolio value Wt at time t is given by:

Wt = v + G̃t −
t−1∑
s=0

Ks

S
(0)
s

, t = 1, . . . , T. (110)

Proof. Using the self-financing condition in the presence of consumption, the portfolio
value evolves according to:

Wt = Wt−1 +
N∑
i=1

ϕit
(
Sit − Sit−1

)
−Kt−1.

Expressing in terms of discounted prices:

W̃t = W̃t−1 +
N∑
i=1

ϕit
(
S̃it − S̃it−1

)
− Kt−1

S
(0)
t−1

.

By iterating this equation from t = 1 to t = T and summing up, we arrive at equa-
tion (110).

Definition 8.14. A consumption process (Kt)Tt=0 is called attainable if there exists
a self-financing trading strategy ϕ with (K,ϕ) admissible such that KT = VT .

Under an equivalent martingale measure Q, the discounted gains process G̃t is a martingale
starting at zero. At maturity T , the terminal portfolio value is:

WT = v + G̃T −
T−1∑
s=0

Ks

S
(0)
s

.

Since WT = KT we have:

v + G̃T =
T∑
s=0

Ks

S
(0)
s

.

Taking expectations under Q and noting that G̃T is a Q-martingale with zero initial value,
the budget constraint is:

v = EQ

[
T∑
t=0

Kt

S
(0)
t

]
.

Proposition 8.15. In a complete financial market with unique martingale measure
Q, for a given initial wealth v ≥ 0, a consumption process (Kt)Tt=0 is attainable if
and only if:

v = EQ

[
T∑
t=0

Kt

S
(0)
t

]
.

Whereas in an incomplete market with multiple martingale measures Qj, j = 1, . . . , J
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the consumption process is attainable if and only if:

v = EQj

[
T∑
t=0

Kt

S
(0)
t

]
, ∀j = 1, . . . , J.

Step ii): Determining the Optimal Attainable Consumption Process We aim
to maximize the expected utility from consumption:

max
K

T∑
t=0

EP [βtu(Kt)] ,

subject to the budget constraints derived above.
In the incomplete market with multiple equivalent martingale measures, we face ambiguity
in the budget constraints. To ensure attainability under all extremal martingale measures
Qj, j = 1, . . . , J , we impose:

v = EQj

[
T∑
t=0

Kt

S
(0)
t

]
, ∀j = 1, . . . , J.

Optimization Problem:
max
K

T∑
t=0

EP [βtu(Kt)]

s.t.
T∑
t=0

EQj

[
Kt

S
(0)
t

]
= v, ∀j = 1, . . . , J.

(111)

Remarks:

• The decision variables are the consumption amounts Kt at each time t.

• The investment strategy ϕt does not appear explicitly in the optimization problem.

To solve this problem, we express the constraints in terms of expectations under the
real-world measure P.
Let

• Lj = dQj

dP be the Radon-Nikodym derivative of Qj with respect to P.

• N j
t = 1

S
(0)
t

EP [Lj | Ft].

Then
T∑
t=0

EQj

[
Kt

S
(0)
t

]
=

T∑
t=0

EP

[
Lj ·

Kt

S
(0)
t

]
=

T∑
t=0

EP
[
KtN

j
t

]
.

Then, rewriting the optmization problem yields:
max
K

T∑
t=0

EP [βtu(Kt)]

s.t.
T∑
t=0

EP
[
KtN

j
t

]
= v, ∀j = 1, . . . , J.

(112)
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Lagrangian Formulation We introduce Lagrange multipliers λj for the budget con-
straints:

L(K,λ) =
T∑
t=0

EP [βtu(Kt)]−
J∑
j=1

λj

(
T∑
t=0

EP
[
KtN

j
t

]
− v

)
.

Simplifying:

L(K,λ) =
T∑
t=0

EP

βtu(Kt)−
J∑
j=1

λjN
j
tKt

+
 J∑
j=1

λj

 v.
First-Order Condition For each t, we set the derivative of the Lagrangian with respect
to Kt to zero:

∂L
∂Kt

= 0 =⇒ βtu
′(Kt) =

J∑
j=1

λjN
j
t , a.s.

Solving for Kt

Kt = I

∑J
j=1 λjN

j
t

βt

 ,
where I(y) = (u′)−1(y) is the inverse of the marginal utility function.

Determining the Lagrange Multipliers λj Substitute Kt back into the budget con-
straints:

T∑
t=0

EP

[
N j
t · I

(∑J
k=1 λkN

k
t

βt

)]
= v, ∀j = 1, . . . , J.

This forms a system of J equations to solve for λj.

Optimal Value Function The optimal expected utility is:

J(v) =
T∑
t=0

EP

βtu
I

∑J
j=1 λjN

j
t

βt

 .
Step iii): Determining the Investment Strategy Finally, we need to find an in-
vestment strategy ϕ that finances the optimal consumption process (Kt)Tt=0.

Approach

• Use the martingale representation theorem to express the discounted gains process
G̃t in terms of the martingale EQ [· | Ft].

• Since the process Mt = v + G̃t −
∑t−1
s=0

Ks

S
(0)
s

is a Q-martingale, we can represent G̃t

as a stochastic integral with respect to the discounted asset prices.

• Determine ϕt by solving the hedging problem for the contingent claim corresponding
to the cumulative consumption.
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The specific method to determine ϕt depends on the market model. In discrete-time
models like the binomial model, we can use backward induction. In continuous-time
models, we may apply Itô’s lemma and stochastic calculus techniques.
By adapting the martingale method to the consumption setting, we decompose the prob-
lem of maximizing expected utility from consumption into:

1. Static Optimization: Finding the optimal consumption process by solving an
optimization problem with budget constraints expressed in terms of expectations
under equivalent martingale measures.

2. Dynamic Hedging: Determining an investment strategy that finances the optimal
consumption process, leveraging the martingale representation of the gains process.

8.4.4 Maximizing expected utility from consumption & terminal wealth
using the martingale method

The approach here differs from the previous case in that we no longer require KT = VT
(as per Definition 6 of attainability).
In this context, attainability implies that for an incomplete market with J extremal
martingale measures:

v = EQj

 K0

S
(0)
0

+ · · ·+ KT−1

S
(0)
T−1

+ VT

S
(0)
T

 , j = 1, . . . , J.

To maximize expected utility from consumption and terminal wealth, the problem be-
comes:

max
K,V

EP

[
T∑
t=0

βtuc(Kt) + βTup(VT −KT )
]

subject to EP

[
T−1∑
t=0

KtNt + VTNT

]
= v; j = 1, . . . , J.

Applying the Lagrange multiplier technique, we need to maximize:

max
K,V

EP

 T∑
t=0

βtuc(Kt) + βTup(VT −KT )−
J∑
j=1

λj

(
T−1∑
t=0

KtNt + VTNT

) .
The necessary condition for Kt and VT is:

βtu
′
c(Kt) =

J∑
j=1

λjNt, t = 0, . . . , T − 1,

βTu
′
c(KT ) = βTu

′
p(VT −KT ),

βTu
′
p(VT −KT ) =

J∑
j=1

λjNT .

Using the inverses Ic(·) and Ip(·) of u′
c(·) and u′

p(·), respectively:

Kt = Ic

(∑J
j=1 λjNt

βt

)
, t = 0, . . . , T,

VT = Ip

(∑J
j=1 λjNT

βT

)
+ Ic(·).
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The Lagrange multipliers λj satisfy the budget equations:

EP

 T∑
t=0

N j
t Ic

∑J
j=1 λjN

j
t

βt

+N j
T Ip

∑J
j=1 λjN

j
T

βT

 = v, j = 1, . . . , J.

The optimal value is then:

J(v) = EP

 T∑
t=0

βtuc

Ic
∑J

j=1 λjN
j
t

βt

+ βTup

Ip
∑J

j=1 λjN
j
T

βT

 .
As before, in the last step, determining the investment strategy of a self-financing portfolio
that achieves a terminal value of VT , paralleling the method used for expected utility from
terminal wealth.

111



Appendix



A Stochastic Calculus in Discrete-Time

A.1 Fubini’s Theorem
The following theorem is a version of the stochastic Fubini theorem:

Theorem A.1 (Stochastic Fubini). For i = 0, 1 let (Ei, Ei) be measurable spaces and
Ui : (Ω,F) → (Ei, Ei) measurable. Let F0 = σ(U0) and U1 be independent of U0.
Then

E[f(U0, U1)|F0](ω) = E[f(U0(ω), U1)] =: h(U0(ω))
for all non-negative measurable functions f on E0 × E1.

Proof. The right hand side of the preceding equation is F0-measurable so by definition of
the conditional expectation we only need to show that E[Zf(U0, U1)] = E[Zh(U0)] for all
F0-measurable random variables Z. To this end, notice first that Z allows a representation
of the form Z = g(U0). Thus, Fubini’s theorem yields

E[Zf(U0, U1)] = E[g(U0)f(U0, U1)]

=
∫
E1

∫
E0
g(u0)f(u0, u1)µ0(du0)µ1(du1)

=
∫
E0

∫
E1
g(u0)f(u0, u1)µ1(du1)µ0(du0)

=
∫
E0

(∫
E1
f(u0, u1)µ1(du1)

)
µ0(du0)

= E[g(U0)h(U0)]
= E[Zh(U0)].

A.2 Martingales

Definition A.2. We call a stochastic process (Mt)t∈T on a filtered probability space
(Ω,F ,F,P) a P-martingale if M is F-adapted, satisfies EP [|Mt|] <∞ for all t, and if

Ms = EP [Mt|Fs] for 0 ≤ s ≤ t ≤ T. (113)

A.3 Martingale transforms

Definition A.3. Let (Mt)t∈T denote a martingale on a filtered probability space
(Ω,F ,F,P) and let (Ht)t∈T be an F-predictable process, i.e., Ht is Ft−1-measurable
for all t ∈ T with t > 0, and H0 is F0-measurable. The martingale transform (H •M)
of M by H is defined as

(H •M)t :=
t∑

s=1
Hs∆Ms, with ∆Ms := Ms −Ms−1.
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A.4 Itô’s formula
In the discrete-time setting, Itô’s formula is a consequence of Taylor’s theorem.

Theorem A.4 (Itô’s formula in discrete-time). Let (Mt)t∈T be a martingale on a
filtered probability space (Ω,F ,F,P) and let f : R → R be a twice continuously
differentiable function. Then the process (f(Mt))t∈T is given by

f(Mt) = f(M0) +
t∑

s=1
f ′(Ms−1)∆Ms + 1

2

t∑
s=1

f ′′(Ms−1)(∆Ms)2.

A.5 Girsanov’s theorem
In the discrete-time setting, Girsanov’s theorem can be stated as follows:

Theorem A.5 (Girsanov’s theorem in discrete-time). Let (Mt)t∈T be a martingale on
a filtered probability space (Ω,F ,F,P) and let (Ht)t∈T be an F-predictable process.
Define the process (Zt)t∈T by

Zt = exp
(

t∑
s=1

Hs∆Ms −
1
2

t∑
s=1

H2
s

)
.

Suppose that EP [ZT ] = 1. Then there exists a probability measure Q on (Ω,FT )
equivalent to P such that

dQ
dP

= ZT .

Furthermore, the process (M̃t)t∈T defined by

M̃t = Mt −
t∑

s=1
Hs,

is a martingale with respect to the measure Q and the filtration F.

In other words, Girsanov’s theorem in discrete-time states that under certain conditions,
a change of measure can be achieved by applying a martingale transform, resulting in a
new martingale under the new measure.

B Utility Theory
Utility Theory is a central theme in economics and financial decision-making. Its origins
can be traced back to the attempts by early economists to understand and quantify
human preferences, satisfaction, and the choices that individuals make under conditions
of uncertainty.
In essence, utility represents a measure of relative satisfaction or preference that an indi-
vidual derives from consuming goods, making investments, or generally, facing uncertain
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outcomes. Instead of merely focusing on monetary value or profit, Utility Theory con-
siders the inherent value or satisfaction one gains from an action or decision, making it
especially crucial in the realm of finance, where risk and uncertainty are omnipresent.
In this section, we will delve deep into the foundational concepts of Utility Theory. We
will explore its mathematical formulations, discuss its relevance in portfolio optimization,
and understand how investors and financial institutions leverage utility functions to make
informed decisions under uncertainty.

B.1 Preference Relations
In a market, agents have preferences for certain commodities over others, such as favoring
apples over pears. These preferences are articulated through preference relations. Com-
modities also encompass risky assets or contingent claims with uncertain future pay-offs.
While complete markets assign unique arbitrage-free prices to such claims based on the
risk-neutral measure, incomplete markets present a range of arbitrage-free prices. Prefer-
ence relations and their quantitative equivalent, utility functions, help select among these
prices. Utility functions depict an agent’s risk attitude and can yield different prices based
on the risk quantification method used. They can also guide choices between portfolios
with identical prices in complete markets. The detailed exploration of utility functions
will be covered in Section 5.2, while this section focuses on preference relations.
Let X be a non-empty set representing commodities, securities, or more generally, possible
choices an economic agent can make. A binary relation R on X can be represented as a
subset of X × X , where xRy means (x, y) ∈ R. In the following, we will denote binary
relations by ≻, ⪰, ≺, and ⪯.

Definition B.1. A strict preference relation or preference order on X is a binary
relation ≻ satisfying:

i) Asymmetry: If x ≻ y, then y ̸≻ x.

ii) Negative Transitivity: If x ≻ y and z ∈ X , then either x ≻ z or z ≻ y.

A weak preference relation on X is a binary relation ⪰ satisfying:

i) Completeness: For all x, y ∈ X , either x ⪰ y or y ⪰ x.

ii) Transitivity: If x ⪰ y and y ⪰ z, then x ⪰ z.
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Proposition B.2. Strict and weak preference relations interrelate as follows:

i) If ≻ is a strict preference relation on X , then defining x ⪰ y by the condition
y ̸≻ x yields a weak preference relation on X .

ii) Conversely, if ⪰ is a weak preference relation, then x ≻ y defined by x ⪰ y and
y ̸⪰ x yields a strict preference relation.

Proof. This is left as an exercise.

For strict and weak preference relations ≻ and ⪰, it is assumed they interrelate as in
the previous proposition. An indifference relation ∼ is defined by x ∼ y if and only
if x ⪰ y and y ⪰ x. This indifference relation is an equivalence relation and we can also
express x ≻ y as x ⪰ y ∧ x ̸∼ y.
For notational convenience, we sometimes use reverse preference relations. So, instead of
x ≻ y, we might write y ≺ x, and likewise, y ⪯ x can represent x ⪰ y.

B.2 Numerical representations
Abstract preference orders can be equated with numerical representations using the stan-
dard order ≤ on R.

Definition B.3. A function U : X → R provides a numerical representation of a
preference relation ≻ if x ≻ y is equivalent to U(x) > U(y).

Alternatively, a numerical representation can be defined by:

x ⪰ y ⇐⇒ U(x) ≥ U(y)

Note that any strictly increasing transformation of a numerical representation U results
in another numerical representation, making them non-unique. When these numerical
representations and preference relations have specific additional properties, they can be
expressed as utility functions. This will be discussed further in Section 5.2.

Definition B.4. For a preference relation ≻ on X , a subset Z of X is termed order
dense in X if, for any x, y ∈ X with x ≻ y, there exists some z ∈ Z such that
x ⪰ z ⪰ y.

We have the following results:

Theorem B.5. A preference relation ≻ on X admits a numerical representation if
and only if X contains a countable order dense subset.

Proof. Let Z be a countable order dense subset of X . Choose a probability measure µ on
Z with µ(z) = µ({z}) > 0 for all z ∈ Z. Then we put

U(x) :=
∑
z:x≻z

µ(z)−
∑
z:z≻x

µ(z). (114)
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Notice that the existence of such a probability distribution is guaranteed by countability of
Z, that also makes U(x) well-defined in terms of the given summations. By construction,
we have x ≻ y iff U(x) > U(y). To see this, we first compute for x ⪰ y the difference

U(x)− U(y) =
∑

z:x≻z⪰y
µ(z) +

∑
z:x⪰z≻y

µ(z).

If x ≻ y, then there is z0 ∈ Z such that x ⪰ z0 ⪰ y. By negative transitivity, we also
have z0 ≻ y or x ≻ z0. Hence, we have x ≻ z0 ⪰ y or x ⪰ z0 ≻ y, and we see that at
least one of the two sums in the display is strictly positive, which yields U(x) > U(y). If
x ⪰ y, the right-hand side of the displayed formula is still well-defined, has nonnegative
terms (possibly zero) and hence U(x) ≥ U(y). It then follows by contraposition that
U(x) > U(y) implies x ≻ y. We conclude that U as in (114) is a numerical representation
of ≻.
Conversely, we assume that a numerical representation is given. We also assume that
X is uncountable, otherwise there is nothing to prove. Let J := {[a, b] : a, b ∈ Q, a <
b, U−1([a, b]) ̸= ∅}. Then, for every I ∈ J , there exists zI ∈ X with U(zI) ∈ I. Put
A := {zI : I ∈ J} and observe that A is countable.
The set A is almost the set Z we are after. A naive approach could be as follows. Suppose
y ≻ x, then U(y) > U(x) and there are rational a and b such that U(x) < a < b < U(y).
The problem arises that it is not guaranteed that U−1([a, b]) is non-void.
To remedy this, we will enlarge the set A with certain elements of Ac and consider thereto
first the set C := {(x, y) ∈ Ac × Ac : y ≻ x and ∀z ∈ A : x ⪰ z or z ⪰ y}. Let
x, y) ∈ C, but suppose that there exists z ∈ X \ A such that y ≻ z ≻ x. Then we
can also find rational a and b such that U(x) < a < U(z) < b < U(y) and therefore
I := [a, b] ∈ J . By definition of A, we can then find zI ∈ A that then also has the
property U(x) < a ≤ U(zI) ≤ b < U(y) and hence y ≻ zI ≻ x. This contradicts
(x, y) ∈ C. We conclude that if (x, y) ∈ C, then for all z ∈ X it holds that x ⪰ z or
z ⪰ y.
This implies the following observation. If (x, y) ∈ C and (x′, y′) ∈ C, such that U(x) ̸=
U(x′) or U(y) ̸= U(y′), then (U(x), U(y)) ∩ (U(x′), U(y′)) = ∅. We argue as follows. The
situation x ∼ x′ and y ∼ y′ is ruled out by assumption. Therefore, assume w.l.o.g. that
x ̸≡ x′. Since (x, y) ∈ C, we must have x ⪰ x′ or x′ ⪰ y, which implies that either
U(x) ≥ U(x′) or U(x′) ≥ U(y). In the latter case, we are done. Let then the former
inequality hold. Since also (x′, y′) ∈ C, we have x′ ⪰ x or x ⪰ y′. The first of these
possibilities cannot happen, since we ruled out x ∼ x′, and therefore the second one
holds, and we obtain

U(x) ≥ U(y′),
from which the conclusion follows as well. Knowing that the intervals (U(x), U(y)) with
(x, y) ∈ C are disjoint, we conclude that there are only countably many of them and it
follows that the collection of these intervals can be written as a collection of intervals

(U(x), U(y)),

where x and y run through a countable subset of X , B say. We put Z = A ∪ B, a
countable set as well, and we will see that it is order dense. Take x, y ∈ X \ Z with
y ≻ x. If there is z ∈ A such that y ≻ z ≻ x, we are done. If such a z doesn’t exist, then
(x, y) ∈ C, in which case we have for instance U(x) = U(z) for some z ∈ B. But then
y ≻ z ⪰ x.
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Not every preference relation admits a numerical representation. An example is the
lexicographical order on [0, 1] × [0, 1], defined by x ≻ y if x1 > y1 or (x1 = y1 and
x2 > y2).

Example B.6. Consider X = [0, 1] × [0, 1] endowed with the lexicographical order
≻. Suppose ≻ admits a numerical representation U . Given (α, 1) ≻ q(α, 0), we have
d(α) := U(α, 1)− U(α, 0) > 0 for all α ∈ [0, 1]. Define

An := {α ∈ [0, 1] : d(α) > 1
n
}.

Thus, [0, 1] = ⋃
nAn. Since [0, 1] is uncountable, there must be a set Am with

infinitely many elements. In this set, we can choose for any positive integer N ,
real numbers α0 < . . . < αN . Note that U(αi+1, 0) > U(αi, 1), and so we get
U(αi+1, 0)− U(αi, 0) > d(αi) > 1

m
. Hence we get

U(1, 1)− U(0, 0) = U(1, 1)− U(αN , 0) +
N−1∑
i=0

(U(αi+1, 0)− U(αi, 0)) + U(α0, 0)− U(0, 0)

>
N

m
.

Letting N →∞ yields U(1, 1)− U(0, 0) =∞, which is excluded.

Now, let’s define various types of preference intervals. The first two are:

((x,→)) := {y ∈ X : y ≻ x},
((←, x)) := {y ∈ X : x ≻ y}.

Additionally, we use
((x, y)) for ((←, y)) ∩ ((x,→)).

Furthermore, we have

[[x,→)) = {y ∈ X : y ⪰ x},
((←, x]] = {y ∈ X : x ⪰ y} and so on.

Expressing the negative transitivity of ≻ using intervals, we get

((←, x)) ∪ ((y,→)) = X if x ≻ y.

Definition B.7. Let X be a topological space. A continuous preference relation
is any preference relation ≻ such that for every x ∈ X , the sets ((x,→)) and ((←, x))
are open.

Assuming ≻ admits a numerical representation U , due to the identity

((x,→)) = U−1(U(x),∞),

we see that ≻ is continuous if U is continuous. However, there are preference relations
that are not continuous. Take for example the lexicographical order on X = [0, 1]× [0, 1].
The set {(y1, y2) ∈ X : (y1, y2) ≻ (1

2 ,
1
2)} is not open in the standard topology.
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Proposition B.8. Let X be a Hausdorff space, and let X ×X be equipped with the
product topology. Then, the following are equivalent:

i) ≻ is continuous.

ii) The set {(x, y) : y ≻ x} is open.

iii) The set {(x, y) : y ⪰ x} is closed.

Proof. First we show (i)⇒ (ii): Let (x0, y0) ∈M := {(x, y) : y ≻ x}. We show that there
are open subsets U and V of X such that (x0, y0) ∈ U × V ⊂ M . Suppose first that the
preference interval ((x0, y0)) ̸= ∅. Pick a z from this preference interval, then y0 ≻ z ≻ x0.
The sets U := ((←, z)) and V := ((z,→)) are open and contain x0 and y0 respectively.
Moreover, one quickly sees that U ×V ⊂M . If the preference interval ((x0, y0)) is empty,
we choose U = ((←, y0)) and V = ((x0,→)). Take (x, y) ∈ U × V . Then y0 ≻ x and
y ≻ x0. To show that y ≻ x, we assume the contrary. By negative transitivity we must
have y0 ≻ y. But then y ∈ ((x0, y0)), which was empty. Contradiction.
(ii)⇒ (iii): It follows from (ii) that also {(x, y) : x ≻ y} is open. But its complement is
just {(x, y) : y ⪰ x}.
(iii)⇒ (i): Since X is Hausdorff, every singleton {x} is closed and so {x}×X is closed in
the product topology. By assumption, then also {x} × {y : y ⪰ x} = {x} ×X ∩ {(u, v) :
v ⪰ u} is closed. But then, the set {y : y ⪰ x} is closed in X since a product set is closed
iff all factors are closed, and so {y : x ≻ y} is open. In a similar way one proves that
{y : y ≻ x} is open.

Proposition B.9. Let X be a connected topological space endowed with a continu-
ous preference order ≻. If X is dense, then X is also order dense. If X is separable,
then ≻ admits a numerical representation.

Proof. First we rule out the trivial situation in which all elements of X are indifferent.
So, we can take x, y ∈ X with y ≻ x. Observe that y ∈ ((x,→)) and x ∈ ((←, y)), so both
open preference intervals are non-empty. Moreover, their union is X , because of negative
transitivity. Then we must have that ((x,→)) ∩ ((←, y)) ̸= ∅, because X is connected.
The intersection is open as well, so it must contain a z from Z, since Z is dense. Then
y ≻ z ≻ x, and so Z is order dense. If X is separable, there exists a countable dense and
thus order dense subset. Now, apply Theorem B.5 to conclude the proof.

Without proof we give the following result:

Theorem B.10. Let X be a connected and separable topological space, endowed
with a continuous preference order ≻. Then ≻ admits a continuous numerical repre-
sentation.
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C Analysis

Proposition C.1. For p ∈ [0,∞], the dimension of the linear space Lp(Ω,F ,P) is
given by

dimLp(Ω,F ,P) = sup{n ∈ N | ∃ a partition A1, . . . , An of Ω with Ai ∈ F and P[Ai] > 0}.
(115)

Moreover, n := dimLp(Ω,F ,P) <∞ if and only if there exists a partition of Ω into
n atoms of (Ω,F ,P).

Proof. Suppose there is a partition A1, . . . , An of Ω such that Ai ∈ F and P[Ai] > 0
for all i. Consider the corresponding indicator functions 1A1 , . . . , 1An , which are non-
zero elements of Lp(Ω,F ,P). These indicator functions are linearly independent. Hence,
dimLp ≥ n.
It therefore remains to consider the case where the right-hand side of (115) is finite, say
n0. Let A1, . . . , An0 be a partition of Ω that attains this maximum, meaning n0 is the
largest integer for which such a partition exists. Each Ai must be an atom of (Ω,F ,P);
otherwise, we could refine the partition further and increase n0.
By definition of an atom, any Z ∈ Lp(Ω,F ,P) is essentially constant on each Ai. Denote
this constant by zi. Then we have

Z =
n0∑
i=1

zi1Ai
P-a.s.

Thus, every element of Lp can be represented as a linear combination of the n0 indicator
functions 1A1 , . . . , 1An0

. Since these are linearly independent, we conclude dimLp = n0.

Lemma C.2 (Jensen’s Inequality). Let u : S → R be concave with finite m(µ) and∫
u dµ. Then,

∫
u dµ ≤ u(m(µ)). If u is strictly concave and µ is not degenerate,

then
∫
u dµ < u(m(µ)).

C.1 Hahn-Banach Separation Theorem
The following theorem is the famous geometric version of Hahn-Banach’s theorem. Usu-
ally, it is called the Hahn-Banach separation theorem. It generalizes the Hyperplane
separation theorem on Euclidean spaces to general topological vector spaces.

Theorem C.3 (Hahn-Banach Separation Theorem). Let A and B be non-empty
convex subsets of a real locally convex topological vector space X. If IntA ̸= ∅ and
B ∩ IntA = ∅, then there exists a continuous linear functional f on X such that

sup f(A) ≤ inf f(B), and f(a) < inf f(B) for all a ∈ IntA,

where such an f is necessarily non-zero.
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