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The Cox-Ross-Rubinstein Model

Let (Ω,F ,P,F, (S(0), S(1))) denote a canonicl CRR model which is complete. Solve the following exercises:

3.1 (Forward-start Options [2p])
Let T0 ∈ {1, . . . , T − 1} and K > 0. The payoff of forward starting call option has the form(

S
(1)
T

S
(1)
T0

−K

)+

.

Determine its arbitrage-free price and replicating strategy in the CRR model.

3.2 (One-period CRR [2p])
Lets assume that T = 1, i.e., we assume a one-period CRR model. Suppose we want to determine the

price at time zero of the derivative H = S
(1)
1 , i.e., the derivative pays off the stock price at time T = 1.

What is the time-zero price WH
0 given by the risk-neutral pricing formula?

3.3 (Asian Option [2p])
Consider the three-period CRR model in Figure 1 below and take the interest rate r = 0.25. What is
D,U , Q(Rt = U) in this case? For n = 0, 1, 2, 3 define

Yn =

n∑
k=0

S
(1)
k ,

the sum of the stock prices between times zero and n. Consider an Asian call option, see Example 2.4 in
the lecture notes, that expires at time three and has strike K = 4, i.e., whose payoff at time T = 3 is

Hasian = (
1

4
Y3 − 4)+.

Let W asian
n (s, y) denote the price of this option at time n, if S

(1)
n = s and Yn = y. In particular, we have

W asian
3 (s, y) = (1

4y − 4)+.

(a) Develop an algorithm for computing W asian
n recursively. In particular, write a formula for W asian

n in
terms of W asian

n+1 .

(b) Apply the algorithm developed in (i) to compute W asian
0 (4, 4), the price of the Asian option at time

zero.

(c) Provide a formula for δn(s, y), the number of shares of stock that should be held by the replicating

portfolio at time n if S
(1)
n = s and Yn = y.
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Figure 1: Three-period binomial asset pricing model.



Variance-Optimal Hedging

3.4 (Variance-optimal hedge under martingale measure [4p])
Let X denote the discounted asset price process. In the first exercise we fill in the open gaps in the lecture
notes. Indeed, solve the following:

i) Prove the remainding part of Lemma 3.7, i.e., show that

a) the process (MtXt)t∈T is a martingale;

b) the Kunita-Watanabe decomposition in equation (46) is unique.

ii) Prove Theorem 3.8.

(Hint: It might help to use the predictable quadratic (co)variation process 〈M〉 for square-integrable
martingales M given by ∆〈M〉 = EP

[
(Mn −Mn−1)2|Fn−1

]
and its properties for the derivations (see

Section 9 in the MTP lecture notes).

3.5 (Variance-optimal hedge in an affine GARCH model [4p])
In this exercise we consider a univariate discrete-time stochastic volatility model of GARCH type given
as follows: we model the discounted underlying asset price process (S̃t)t∈T as

S̃t = S̃t−1 exp
(
− 1

2
Vt +

√
Vtz
∗
t

)
, (1)

Vt = ω + βVt−1 + α
(
z∗t−1 − γ∗

√
Vt−1

)2
, (2)

for some suitable parameters ω, α, β and γ such that Vt ≥ 0 for all t ∈ T and where z∗t is standard normal

distributed. The process (Vt)t∈T is called the instantaneous variance process of (the log price of) S̃. We

also assume that the discounted asset price process (S̃t)t∈T is square-integrable with positive conditional

variance process (σ2
t )t=1,2,...,T and we denote by H̃ some discounted square-integrable contingent claim.

i) Argue why a variance-optimal strategy (W ∗0 , φ
∗) for H̃ exists and provide an expression of the strategy

using Theorem 3.8.

ii) Under the additional assumption that H = f(S̃T ) for some function f , we have a integral represen-
tation for f : C→ C of the form

f(x) =

∫ R+i∞

R−i∞
xul(u) du,

for some function l and R ∈ R. For instance, the payoff of an European Call Option can be written
as

f(x) = (x−K)+ =
1

2πi

∫ R+i∞

R−i∞
xu

K1−u

u(u− 1)
du.

a) Assume that H̃ has an integral representation as above. Then show that the derivative prices

W̃H
t for t = 0, 1, . . . , T − 1 under some pricing measure Q and the variance-optimal hedge under

the same measure can be expressed using such complex integrals as well.

b) Take as a fact that the model (1)-(2) is affine, which means that for any t ≤ T and T ∈ T

the joint moment-generating function g(t, T, u, v) of (S̃t, Vt) has the following exponential affine
form:

g(t, T, u, v) = EQ

[
S̃u
T exp

(
vVt+2

)
|Ft

]
= S̃u

t exp(A(t, T, u, v) +B(t, T, u, v)Vt+1),

for two deterministic functions A and B solving some associated difference equations. Use the
representation in a) and this fact to show that

W̃H
t =

∫ R+i∞

R−i∞
g(t, T, u, 0)l(u) du,

and that the variance-optimal hedge is given by

φ∗t+1 =

∫ R+i∞

R−i∞

exp(A(t+ 1, T, u, 0))g(t, t+ 1, u+ 1, B(t+ 1, T, u, 0))− S̃tg(t, T, u, 0)

g(t, t+ 1, 2, 0)− S̃2
t

l(u) du1{g(t,t+1,2,0)−S̃2
t>0}.



In the next exercise we construct an example of a financial market, where the bounded mean-variance
trade-off condition (43) in the lecture notes is not satisfied and where the subspace GT is indeed not closed.

3.6 (Counterexample for closedness of the space GT [2p])
Let Ω = [0, 1] × {−1,+1} with its Borel σ-algebra F . Outcomes are denoted by ω = (u, v) with u ∈
[0, 1], v ∈ {−1,+1}, and we define U(ω) = u the first and by V (ω) = v the second coordinate. Let
F0 = F1 = σ(U), F2 = F and let P be the measure on (Ω,F) such that U is distributed uniformly on
[0, 1] and the conditional distribution of V given U is U2δ{+1}+ (1−U2)δ{−1}. Let X0 = 0,∆X1 = 1 and

∆X2 = V +(1 + U)− 1 = V +U − V −,

so that
∆X2(u, v) = uδ{v=+1} − δ{v=−1}

. Consider now the contingent claim H = 1
U V

+(1 + U).

i) Show that H ∈ L2(Ω,F ,P)

ii) Let φ be a predictable process with terminal gain satisfying G2(φ) = H P-almost surely. Show that

1

U
V +(1 + U) = H = φ1∆X1 + φ2∆X2 = φ1 + φ2(V +(1 + U)− 1) (3)

implies that φ1 = φ2 = U−1 P-almost surely.

iii) Show that φ is not in S2 and that therefore H is not in G2.

iv) Next, set
φn := φ1{U≥1/n} = U−1

1{U≥1/n} (4)

and show that φn ∈ S2 for every n ∈ N
and that

G2(φn) = U−1V +(1 + U)1{U≥1/n} = H1{U≥1/n} (5)

converges to H in L2(Ω,F ,P).

v) Part i)-iv) shows that the space G2 is not closed in L2(Ω,F ,P), so the variance optimization problem
for H does not have a solution. To conclude this example, show that X as constructed above does
not satisfy the bounded mean-variance trade-off condition.

The Semi-Static Variance-Optimal Hedging Problem

Consider the following extension of variance-optimal hedging, called semi-static variance-optimal hedging.
The idea is, that in addition to the contingent claim H0 which is to be hedged, we denote by H =
(H1, . . . ,Hn)> the vector of supplementary contingent claims, all assumed to be square-integrable random
variables in L2(Ω,FT ,Q). Again, we associate to each Hi the martingale

Hi
t := E

[
Hi| Ft

]
, t = 0, 1, . . . , T, i = 0, . . . , n. (6)

The static part of the strategy can be represented by an element v of Rn, where vi represents the quantity
of claim Hi bought at time t = 0 and held until time t = T . The dynamic part ϑ of the strategy is again
represented by an element of S2, the space of square-integrable predictable processes with respect to the
price process S.

The variance-optimal semi-static hedge (ϑ, v) ∈ S2 × Rn and the optimal initial capital c ∈ R are the
solution of the minimization problem

ε2 = min
(ϑ,v)∈S2×Rn, c∈R

E

(c− v>E [HT ] +

T∑
t=1

ϑt∆St −
(
H0

T − v>HT

))2
 . (7)

Note that v>E [HT ] is the cost of setting up the static part of the hedge, and its terminal value is v>HT .

The dynamic part is self-financing and results in the terminal value
∑T

t=1 ϑt∆St. Adding the initial capital
c and subtracting the target claim H0

T yields the above expression for the hedging problem.



To solve the variance-optimal semi-static hedging problem, we decompose it into an inner and an outer
minimization problem and rewrite (7) as

ε2(v) = min
ϑ∈S2, c∈R

E

(c− v>E [HT ] +

T∑
t=1

ϑt∆St −
(
H0

T − v>HT

))2
 , (inner problem)

ε2 = min
v∈Rn

ε2(v). (outer problem)

(8)

The inner problem is of the same form as the variance-optimal hedging problem without supplementary
assets, while the outer problem turns out to be a finite-dimensional quadratic optimization problem. To
formulate the solution, we write the Kunita-Watanabe decompositions of the claims (H0, . . . ,Hn) with
respect to S as

Hi
t = Hi

0 +

t∑
s=1

ϑis∆Ss + Li
t, t = 0, 1, . . . , T, i = 0, . . . , n. (9)

As in the classical variance optimal hedging problem, we obtain the solution:

ϑit =
E
[
∆Hi

t∆St| Ft−1

]
E [(∆St)2| Ft−1]

1{E[(∆St)2| Ft−1]6=0}, t = 1, . . . , T, i = 0, . . . , n. (10)

We introduce the vector notation ϑ = (ϑ1, . . . , ϑn)> for the strategies and L = (L1, . . . , Ln)> for the
residuals in the Kunita-Watanabe decomposition.

3.7 (Semi-Static Variance-Optimal Hedging [2p])
Consider the variance-optimal semi-static hedging problem (7) and set

A := Var
[
L0
T

]
, B := Cov

[
LT , L

0
T

]
, C := Cov [LT , LT ] . (11)

Assume that C is invertible. Show that the unique solution of the semi-static hedging problem is given
by

c = E
[
H0

T

]
, v = C−1B, ϑvt = ϑ0

t − v>ϑt, t = 1, . . . , T,

and that the minimal squared hedging error is given by

ε2 = A−B>C−1B.

Moreover, show that the elements of A, B, and C can be expressed as

E
[
Li
TL

j
T

]
= E

[
T∑

t=1

Cov
(

∆Hi
t ,∆H

j
t | Ft−1

)
−

T∑
t=1

ϑitϑ
j
tVar (∆St | Ft−1)

]
, i, j = 0, . . . , n. (12)


