

Exercises: Modelling Financial Markets

We assume that $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}, X)$ is a frictionless financial market in finite discrete-time $\mathbf{T} = \{0, 1, \ldots, T\}$ and (d+1)-tradable assets with $d \in \mathbb{N}$. If φ_t and X_t are two (d+1)-dimensional vectors we denote the scalar product as $\varphi_t^{\mathsf{T}} X_t$, but you might also write $\varphi_t \cdot X_t$ or $\langle \varphi_t, X_t \rangle_{\mathbb{R}^d}$ if you prefer. For any stochastic process $(Y_t)_{t \in \mathbf{T}}$ we write $\Delta Y_t = Y_t - Y_{t-1}$ for all $t \geq 1$ and set $\Delta Y_0 = Y_0$.

Now, solve the following exercises:

1.1 (Predictable or Adapted? [3p])

Consider a financial market with only two assets which are modeled as usual by the stochastic process $X = (S^{(0)}, S^{(1)})$ and that is adapted to the filtration $(\mathcal{F}_t)_{t \in \mathbf{T}}$.

Decide which of the following processes φ are predictable and which in general are not:

- (a) $\varphi_t = \mathbf{1}_{\{S_t^{(1)} > S_t^{(1)}\}};$
- (b) $\varphi_1 = 1$ and $\varphi_t = \mathbf{1}_{\{S_{t-1}^{(1)} > S_{t-2}^{(1)}\}}$ for $t \ge 2$;
- (c) $\varphi_t = \mathbf{1}_A \cdot \mathbf{1}_{\{t > t_0\}}$, where $t_0 \in \{0, \ldots, T\}$ and $A \in \mathcal{F}_{t_0}$;

(d)
$$\varphi_t = \mathbf{1}_{\{S_t^{(1)} > S_o^{(1)}\}};$$

(e) $\varphi_1 = 1$ and $\varphi_t = 2\varphi_{t-1}\mathbf{1}_{\{S_t^{(1)}, \leq S_0^{(1)}\}}$ for $t \ge 2$.

1.2 (Self-financing strategies [3p])

Let $\varphi = (\varphi_t)_{t \in \mathbf{T}}$ be a trading strategy such that $\varphi_t^{\mathsf{T}} X_t = \varphi_{t+1}^{\mathsf{T}} X_t$ for all $t \in \{0, 1, \dots, T-1\}$. Show that this is equivalent to

$$\Delta W_t(\varphi) = \varphi_t^{\mathsf{T}} \Delta X_t, \quad \forall t \in \{1, 2, \dots, T\},\$$

where $(W_t(\varphi))_{t \in \mathbf{T}}$ denotes the wealth process of the strategy φ . Whenever a trading stratefy satisfies one of the equivalent conditions, we call the strategy φ self-financing.

1.3 (A geometric model [3p])

Let $(S_t)_{t \in \mathbf{T}}$ be a strictly positive price process of some risky asset, say a stock. The returns are defined by $R_t = \Delta S_t / S_{t-1}$ for t = 1, 2, ..., T so that $S_t = S_0 \prod_{k=1}^t (1 + R_k)$ and let the filtration \mathbb{F} be given by $\mathcal{F}_t = \sigma(S_0, ..., S_t)$. Then:

- i) Show that $(S_t)_{t \in \mathbf{T}}$ is a \mathbb{P} -martingale if R_1, \ldots, R_T are independent and $\mathbb{E}[R_t] = 0$.
- ii) Give necessary and sufficient conditions on R_1, \ldots, R_T such that $(S_t)_{t \in \mathbf{T}}$ is a \mathbb{P} -martingale.
- iii) Do you find an example such that $(S_t)_{t \in \mathbf{T}}$ is a martingale, but the returns are not independent?