Exercises: Modelling Financial Markets

We assume that $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}, X)$ is a frictionless financial market in finite discrete-time $\mathbf{T}=\{0,1, \ldots, T\}$ and $(d+1)$-tradable assets with $d \in \mathbb{N}$. If φ_{t} and X_{t} are two $(d+1)$-dimensional vectors we denote the scalar product as $\varphi_{t}^{\top} X_{t}$, but you might also write $\varphi_{t} \cdot X_{t}$ or $\left\langle\varphi_{t}, X_{t}\right\rangle_{\mathbb{R}^{d}}$ if you prefer. For any stochastic process $\left(Y_{t}\right)_{t \in \mathbf{T}}$ we write $\Delta Y_{t}=Y_{t}-Y_{t-1}$ for all $t \geq 1$ and set $\Delta Y_{0}=Y_{0}$.
Now, solve the following exercises:
1.1 (Predictable or Adapted? [3p])

Consider a financial market with only two assets which are modeled as usual by the stochastic process $X=\left(S^{(0)}, S^{(1)}\right)$ and that is adapted to the filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbf{T}}$.
Decide which of the following processes φ are predictable and which in general are not:
(a) $\varphi_{t}=\mathbf{1}_{\left\{S_{t}^{(1)}>S_{t-1}^{(1)}\right\}}$;
(b) $\varphi_{1}=1$ and $\varphi_{t}=\mathbf{1}_{\left\{S_{t-1}^{(1)}>S_{t-2}^{(1)}\right\}}$ for $t \geq 2$;
(c) $\varphi_{t}=\mathbf{1}_{A} \cdot \mathbf{1}_{\left\{t>t_{0}\right\}}$, where $t_{0} \in\{0, \ldots, T\}$ and $A \in \mathcal{F}_{t_{0}}$;
(d) $\varphi_{t}=\mathbf{1}_{\left\{S_{t}^{(1)}>S_{0}^{(1)}\right\}}$;
(e) $\varphi_{1}=1$ and $\varphi_{t}=2 \varphi_{t-1} \mathbf{1}_{\left\{S_{t-1}^{(1)}<S_{0}^{(1)}\right\}}$ for $t \geq 2$.
1.2 (Self-financing strategies [3p])

Let $\varphi=\left(\varphi_{t}\right)_{t \in \mathbf{T}}$ be a trading strategy such that $\varphi_{t}^{\top} X_{t}=\varphi_{t+1}^{\top} X_{t}$ for all $t \in\{0,1, \ldots, T-1\}$. Show that this is equivalent to

$$
\Delta W_{t}(\varphi)=\varphi_{t}^{\top} \Delta X_{t}, \quad \forall t \in\{1,2, \ldots, T\}
$$

where $\left(W_{t}(\varphi)\right)_{t \in \mathbf{T}}$ denotes the wealth process of the strategy φ. Whenever a trading stratefy satisfies one of the equivalent conditions, we call the strategy φ self-financing.
1.3 (A geometric model [3p])

Let $\left(S_{t}\right)_{t \in \mathbf{T}}$ be a strictly positive price process of some risky asset, say a stock. The returns are defined by $R_{t}=\Delta S_{t} / S_{t-1}$ for $t=1,2, \ldots, T$ so that $S_{t}=S_{0} \prod_{k=1}^{t}\left(1+R_{k}\right)$ and let the filtration \mathbb{F} be given by $\mathcal{F}_{t}=\sigma\left(S_{0}, \ldots, S_{t}\right)$. Then:
i) Show that $\left(S_{t}\right)_{t \in \mathbf{T}}$ is a \mathbb{P}-martingale if R_{1}, \ldots, R_{T} are independent and $\mathbb{E}\left[R_{t}\right]=0$.
ii) Give necessary and sufficient conditions on R_{1}, \ldots, R_{T} such that $\left(S_{t}\right)_{t \in \mathbf{T}}$ is a \mathbb{P}-martingale.
iii) Do you find an example such that $\left(S_{t}\right)_{t \in \mathbf{T}}$ is a martingale, but the returns are not independent?

