

Optimal Control II

12.1 (Logarithmic utility of terminal wealth [3p])

Assume we are in the same setting of Section 7.3.1 with d = 1 and $u(x) = \log(x)$, but with $(R_t)_{t \in \mathbf{T}}$ not necessarily *iid*. Show using Proposition 7.9 that the optimal control $\alpha^*(t, \omega)$ in this situation is given as the maximizer of the mapping $\gamma \mapsto \mathbb{E}_{\mathbb{P}} [\log(1 + \gamma R_t) | \mathcal{F}_{t-1}](\omega)$.

12.2 (Optimal control variance-optimal hedging [3p])

Let us unsider the variance-optimal hedging problem, where $(S_t)_{t \in \mathbf{T}}$ denotes a one-dimensional squareintegrable asset price process and $H \in \mathcal{L}^2(\Omega, \mathcal{F}_T, \mathbb{P})$ an European contingent claim. Moreover, we assume that $(S_t)_{t \in \mathbf{T}}$ is already a martingale under \mathbb{P} . We already know from Theorem 6.16 that the varianceoptimal hedge (W_0^*, ϕ^*) is given by:

$$\begin{cases} \phi_{t+1}^* \coloneqq \frac{\operatorname{Cov}(\widehat{W}_{t+1}, \Delta X_{t+1} | \mathcal{F}_t)}{\sigma_{t+1}^2} \mathbb{1}_{\{\sigma_{t+1} \neq 0\}}, \quad t = 0, \dots, T-1, \\ W_0^* \qquad \coloneqq \widehat{W}_0 = \mathbb{E}_{\mathbb{P}} \left[\widetilde{H} \right]. \end{cases}$$

Identify the variance-optimal hedging problem with a stochastic optimal control problem and show that the variance-optimal hedge (W_0^*, ϕ^*) solves the optimal control problem using Proposition 7.9 in the lecture notes.

12.3 (Maximizing expected utility from consumption [3p])

Consider the maximization of $\mathbb{E}_{\mathbb{P}}\left[\sum_{t=0}^{T} \beta^{t} u(C_{t})\right]$ in the setting of Section 7.4.3, with the power utility function $u(x) = x^{\gamma}/\gamma$ for $\gamma < 1$ and $\gamma \neq 0$. Show that the optimal C_{t}^{*} is of the form

$$C_t^* = c \frac{\beta^{t/(1-\gamma)}}{N_t^{1/(1-\gamma)}},$$

for some c (which one?) and compute the maximal value of the objective function.