

Exercises: Preferences

6.1 ([3p])

Assume that \succ is a continuous preference relation on a connected set \mathcal{X} , which is endowed with a topology that is first-countable (this allows you to work below with sequences). Let \mathcal{Z} be a dense subset of \mathcal{X} . If $U: \mathcal{X} \to \mathbb{R}$ is continuous and its restriction to \mathcal{Z} is a numerical representation of \succ , then U is also a numerical representation of \succ on all of \mathcal{X} . To show this, you verify the following implications:

(a)
$$x \succ y \Rightarrow U(x) > U(y)$$

(b)
$$U(x) > U(y) \Rightarrow x \succ y$$
.

Hints:

To show (a) you complete the following steps. Show that there are $z, w \in \mathbb{Z}$ such that $x \succ z \succ w \succ y$. Choose then $z_n, w_n \in \mathbb{Z}$ such that $z_n \to x$ and $w_n \to y$ and finish the proof.

For (b) you show first that $U^{-1}(U(y), \infty) \cap U^{-1}(-\infty, U(x))$ is non-void and select $z, w \in \mathbb{Z}$ such that U(x) > U(z) > U(w) > U(y). Use again convergent sequences.

6.2 ([3p])

Let \mathcal{X} be a connected topological space and \succ a continuous strict preference relation on it.

- (a) Let $x \succ y$. Show that $\mathcal{X} = ((y, \rightarrow))^c \cup ((y, x)) \cup ((\leftarrow, x))^c$.
- (b) Show that ((y, x)) is not empty.
- (c) Let \mathcal{Z} be dense in \mathcal{X} . Show that there are $z, z' \in \mathcal{Z}$ such that $x \succ z \succ z' \succ y$.

6.3 ([3p])

Let $\mathcal{X} = \mathbb{R}^2_+$, endowed with the ordinary topology and with elements $x = (x_1, x_2)$ etc. Define $x \succeq y$ if $x_1 x_2 \ge y_1 y_2$.

- (a) Show that ≽ defines a weak preference relation. How does the corresponding strict preference relation look? Is it continuous?
- (b) There exists an obvious numerical representation of \succeq . Which one? Is this representation continuous?
- (c) Give a countable order dense subset.
- (d) What are the points in \mathcal{X} that are indifferent of (1,1)? Sketch a few indifference curves.